Проведём в трапеции ABCD высоты BE и CF из тупых углов. Четырехугольник BCFE является прямоугольником (противоположные стороны попарно параллельны, тогда это параллелограмм, то так как есть прямой угол, это прямоугольник), поэтому EF=BC. Известно, что AD-BC=6, тогда AD-EF=6, откуда AE+DF=6. Так как трапеция равнобокая, AE=DF=6/2=3. Рассмотрим треугольник ABE. Он прямоугольный, так как BE - высота трапеции, кроме того, его гипотенуза AB в 2 раза больше катета AE. Значит, угол лежащий против катета AE - угол ABE - равен 30 градусам. Тогда второй острый угол этого треугольника - BAD - равен 90-30=60 градусам. В равнобокой трапеции углы при большем основании равны, тогда угол CDA также равен 60 градусам. Углы при меньшем основании также равны, каждый из них равен 90+30=120 градусам (ABC=ABE+EBC=30+90=120).
ответ: углы равны 60, 60, 120, 120 градусам.
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
қиық пирамида көлемі
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³