226. а) В АВС АВ = см, A = 75°, B = 60°. Найдите AC. б) В треугольнике с углами 105° и 45° наименьшая сторона рав- на см. Найдите среднюю по длине сторону этого треуголь- Ника.
1) Через любую точку пространства можно провести прямую, параллельную другой прямой, но при этом только одну. Данная тема называется параллельность прямых и плоскостей в пространстве.
2) Две плоскости называются параллельными, если они не пересекаются, то есть не имеют общих точек
3) 1°. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.2°. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны
4) Признак параллельности прямой и плоскости:
Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то эта прямая параллельна и самой плоскости.
1. Проведем произвольную прямую b, лежащую в плоскости α.
2. Через прямую b и точку М проведем плоскость β.
3. В плоскости β через точку М проведем прямую а, параллельную прямой b.
Прямая а будет параллельна плоскости α по признаку параллельности прямой и плоскости.
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Объяснение:
1) Через любую точку пространства можно провести прямую, параллельную другой прямой, но при этом только одну. Данная тема называется параллельность прямых и плоскостей в пространстве.
2) Две плоскости называются параллельными, если они не пересекаются, то есть не имеют общих точек
3) 1°. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.2°. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны
4) Признак параллельности прямой и плоскости:
Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то эта прямая параллельна и самой плоскости.
1. Проведем произвольную прямую b, лежащую в плоскости α.
2. Через прямую b и точку М проведем плоскость β.
3. В плоскости β через точку М проведем прямую а, параллельную прямой b.
Прямая а будет параллельна плоскости α по признаку параллельности прямой и плоскости.
ответ: Верхнее основание 3см
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Верхнее основание 3.
Мы можем также найти высоту, зная х:
Так как высота равна (7-х)÷2, то
(7-3)÷2=4÷2=2. Высота трапеции 2
Галочки вверху над х^ - читайте как Х в КВАДРАТЕ