1) Пусть угол при вершине меньше суммы углов при основании. Тогда пусть х° - угол при основании. Используя теорему о сумме углов треугольника получаем: х + х + (х + х - 40) = 180 4х = 220 х = 55°. Значит, угол при основании равен 55°. Тогда угол при вершине равен 2•55° - 40° = 70°. ответ: 55°; 55°; 70°.
2) Пусть угол при основании меньше суммы другого угла при основании и угла при вершине на 40°. Обозначив за А - угол при основании, за B - угол при вершине, получим: А + 40 = А + В, значит, угол В = 40°. Тогда угол А = (180° - 40°)/2 = 70°. ответ: 70°; 70°; 40°.
Отрезать от равностлроннего треугольника равные между собой равносторонние треугольники так, чтобы остался шестиугольник, можно единственным образом: стороны данных треугольников равны сторонам шестиугольника, причём все стороны треугольников равны 1/3 стороне исходного треугольника. Все треугольники будут подобны большему, коэффициент подобия равен 1/3. Тогда их площади относятся как квадрат коэффициента подобия, т.е. 1/9. Теперь найдём сумму площадей отрезанных треугольников: Sотрез. = 3•1/9•36 = 36/3 = 12. Площадь шестиугольника равна разности площади исходного треугольника и сумме площадей отрезанных треугольников: Sшест. = 36 - 12 = 24. ответ: 24.
Тогда пусть х° - угол при основании. Используя теорему о сумме углов треугольника получаем:
х + х + (х + х - 40) = 180
4х = 220
х = 55°.
Значит, угол при основании равен 55°.
Тогда угол при вершине равен 2•55° - 40° = 70°.
ответ: 55°; 55°; 70°.
2) Пусть угол при основании меньше суммы другого угла при основании и угла при вершине на 40°. Обозначив за А - угол при основании, за B - угол при вершине, получим:
А + 40 = А + В, значит, угол В = 40°.
Тогда угол А = (180° - 40°)/2 = 70°.
ответ: 70°; 70°; 40°.
стороны данных треугольников равны сторонам шестиугольника, причём все стороны треугольников равны 1/3 стороне исходного треугольника.
Все треугольники будут подобны большему, коэффициент подобия равен 1/3.
Тогда их площади относятся как квадрат коэффициента подобия, т.е. 1/9.
Теперь найдём сумму площадей отрезанных треугольников:
Sотрез. = 3•1/9•36 = 36/3 = 12.
Площадь шестиугольника равна разности площади исходного треугольника и сумме площадей отрезанных треугольников:
Sшест. = 36 - 12 = 24.
ответ: 24.