23. Прямая, параллельная стороне AD треугольника ADB, пересекает стороны AB и DB в точках Р и Т соответственно. Найдите PT, если BP : PA = 6:11, AD = 34.
Как известно количество вершин и сторон в любом многоугольнике совпадает, пускай в нашем случае их будет х,
дальше будем рассуждать следующим образом: чтобы узнать число диагоналей каждую вершину соединяем с другими вершинами, кроме нее самой и соседних, получаем х *(х-3), но так как при таком соединении диагонали повторяются 2 раза, то их число в х-угольнике будет х*(х-3)/2
по условию имеем соотношение (х*(х-3)/2)/х = 2,5 х² - 3х = 5х х² - 8х = 0 х = 0 либо х = 8 первый корень не удовлетворяет условию,значит х = 8 ответ: 8
Пусть дан параллелограмм ABCD. AD и ВС - ,большие стороны. Точка пересечения диагоналей, которая делит их пополам, - точка О.
Проведем через точку О прямую, отрезок которой MN лежит между большими сторонами параллелограмма, причем точка M принадлежит стороне ВС, а точка N принадлежит стороне AD.
Тогда треугольники ОМС и ONA равны по двум углам (<MCO=<NAO как накрест лежащие при параллельных ВС и AD и секущей АС, <MOC=<NOA как вертикальные, АО=ОС - половины диагонали АС).
В равных треугольниках против равных углов лежат равные стороны. => OM=ON. Следовательно, отрезок MN делится точкой О пополам, что и требовалось доказать.
дальше будем рассуждать следующим образом:
чтобы узнать число диагоналей каждую вершину соединяем с другими вершинами, кроме нее самой и соседних, получаем х *(х-3), но так как при таком соединении диагонали повторяются 2 раза, то их число в х-угольнике будет х*(х-3)/2
по условию имеем соотношение (х*(х-3)/2)/х = 2,5
х² - 3х = 5х
х² - 8х = 0
х = 0 либо х = 8
первый корень не удовлетворяет условию,значит х = 8
ответ: 8
Доказательство в объяснении.
Объяснение:
Пусть дан параллелограмм ABCD. AD и ВС - ,большие стороны. Точка пересечения диагоналей, которая делит их пополам, - точка О.
Проведем через точку О прямую, отрезок которой MN лежит между большими сторонами параллелограмма, причем точка M принадлежит стороне ВС, а точка N принадлежит стороне AD.
Тогда треугольники ОМС и ONA равны по двум углам (<MCO=<NAO как накрест лежащие при параллельных ВС и AD и секущей АС, <MOC=<NOA как вертикальные, АО=ОС - половины диагонали АС).
В равных треугольниках против равных углов лежат равные стороны. => OM=ON. Следовательно, отрезок MN делится точкой О пополам, что и требовалось доказать.