Преобразуй выражение с двумя буквами и найди значения заданных значений букв 564 Б плюс скобка открывается А минус Б скобка закрывается умножить на 26
Дано: ΔАВС - равнобедренный, АК = КВ = ВМ = МС (т. К и М - середины боковых сорон АВ и СВ соответственно), ВD - медиана.
Доказать: ΔBKD = ΔBMD.
Доказательство: есть два треугольника BKD и BMD, у которых сторона BD - общая. стороны KB и BM - равны, т.к. ΔABC - равнобедренный, а точки K и M - середины сторон АВ и СВ соответственно. Т.к. BD - медиана равнобедренного ΔABC, то ∠KBD = ∠DBM. Следовательно, по первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны), треугольники BKD и BMD равны, т.к. KB = BM, BD - общая сторона, ∠KBD = ∠DBM.
пусть дана трапеция ABCD с равными боковыми сторонами AD = BC. сумма ее оснований AB + DC = 17 см, высота AH = 3,5 см
угол ADH = 45 градусам по условию, угол AHD = 90 градусов, так как AH - высота = >
угол DAH = 180 - 90 - 45 = 45 градусов => треугольник AHD - равнобедренный, DH = AH = 3,5 см.
проведем еще одну высоту BL.
угол BCL = 45 градусам по условию, угол BLC = 90 градусов, так как BL - высота =>
угол LBC = 180 - 90 - 45 = 45 градусов => треугольник BCL - равнобедренный, LC = BL = 3,5 см
AB || DC, AH || BL = > ABLH - паралеллограмм => AB = HL
пусть AB = HL = x. тогда:
AB + DC = AB + DH + HL + LC = 2x + 7 = 17
2x = 10
x = 5
AB = 5 см.
DC = DH + HL + LC = 3,5 + 5 + 3,5 = 12 см.
ответ: AB = 5 см; DC = 12 см
Дано: ΔАВС - равнобедренный, АК = КВ = ВМ = МС (т. К и М - середины боковых сорон АВ и СВ соответственно), ВD - медиана.
Доказать: ΔBKD = ΔBMD.
Доказательство: есть два треугольника BKD и BMD, у которых сторона BD - общая. стороны KB и BM - равны, т.к. ΔABC - равнобедренный, а точки K и M - середины сторон АВ и СВ соответственно. Т.к. BD - медиана равнобедренного ΔABC, то ∠KBD = ∠DBM. Следовательно, по первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны), треугольники BKD и BMD равны, т.к. KB = BM, BD - общая сторона, ∠KBD = ∠DBM.
Чтд.