Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними второго треугольника, то такие треугольники равны.
Дано: ΔАВС и ΔА₁В₁С₁. АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁. Доказать: ΔАВС = ΔА₁В₁С₁. Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁. Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁. Так как АВ = А₁В₁, точки В и В₁ совпадут. Так как АС = А₁С₁, точки С и С₁ тоже совпадут. Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁. Так как треугольники совпали при наложении - они равны.
При доказательстве признака использована аксиома: через любые две точки можно провести единственную прямую
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов
Дано: ΔАВС и ΔА₁В₁С₁.
АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁.
Доказать: ΔАВС = ΔА₁В₁С₁.
Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁.
Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁.
Так как АВ = А₁В₁, точки В и В₁ совпадут.
Так как АС = А₁С₁, точки С и С₁ тоже совпадут.
Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁.
Так как треугольники совпали при наложении - они равны.
При доказательстве признака использована аксиома: через любые две точки можно провести единственную прямую
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов