1-случай. Если первый угол в вершине 48°, то второй угол 66.°
2-случай. Если первый угол на основании ∠A=∠C=48°, то второй угол 84°.
Объяснение:
Пусть в треугольнике ΔABC равнобедренный. Пусть ∠B - угол в вершине, тогда углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой, то есть углы на основании равны: ∠A=∠C.
1-случай. Пусть ∠B=48°. Сумма внутренних углов треугольник равна 180°=∠A+∠C+∠B, отсюда ∠A+∠C=180°-∠B=180°-48°=132°. Но ∠A=∠C и поэтому ∠A=∠=132°:2=66.°
2-случай. Пусть ∠A=∠C=48°. Тогда ∠B=180°-∠A-∠B=180°-48°-48°= =180°-96°=84°.
1 В равнобедренном треугольнике медиана является биссектрисой и высотой, BD медиана по усл, а так как угол BDC прямой то BD является также и высотой треугольника ABC, следует медиана и высота совпадают значит этот треугольник равнобедренный что и требовалось доказать
2 пусть х = боковой стороне, тогда основание = x +3, зная, что периметр треугольника равен 45 см, составим уравнение
1-случай. Если первый угол в вершине 48°, то второй угол 66.°
2-случай. Если первый угол на основании ∠A=∠C=48°, то второй угол 84°.
Объяснение:
Пусть в треугольнике ΔABC равнобедренный. Пусть ∠B - угол в вершине, тогда углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой, то есть углы на основании равны: ∠A=∠C.
1-случай. Пусть ∠B=48°. Сумма внутренних углов треугольник равна 180°=∠A+∠C+∠B, отсюда ∠A+∠C=180°-∠B=180°-48°=132°. Но ∠A=∠C и поэтому ∠A=∠=132°:2=66.°
2-случай. Пусть ∠A=∠C=48°. Тогда ∠B=180°-∠A-∠B=180°-48°-48°= =180°-96°=84°.
Объяснение:
1 В равнобедренном треугольнике медиана является биссектрисой и высотой, BD медиана по усл, а так как угол BDC прямой то BD является также и высотой треугольника ABC, следует медиана и высота совпадают значит этот треугольник равнобедренный что и требовалось доказать
2 пусть х = боковой стороне, тогда основание = x +3, зная, что периметр треугольника равен 45 см, составим уравнение
2x + x +3 = 45
3x = 42
x= 14
2) Основание равно x + 3 = 14 +3 = 17 cм
ответ: 14, 14, 17 см.
больше не знаю