3(4). Дана прямая l и окружности омега 1, омега 2 радиусов 6 и 4, располо- женные по одну сторону от l и касающиеся прямой l. Найдите геометрическое место точек пересечения общих внутренних касательных к этим окружностям.
Мне объясняли так, что вот допустим треугольник АВС. Точки, с которых окр касается сторон треугольника назовем, например, на стороне АВ точка К, на стороне ВС точка Р, на стороне АС точка Н. Ну и теперь чтобы продвинуться от точки К к точки Н, по друге КН пройдем быстрее, чем по сторонам КА и АН, то есть КА+АН больше дуги КН. ну и так с остальными. НС+СР больше дуги НР. и РВ+КВ больше дуги КВ. И когда сложим и части окр и все части треугольника, получим, то дуга окр меньше периметра треугольника
Обозначим равные катеты прямоугольного треугольника - а.
АК и ВМ - медианы. Медианы, проведенные к равным сторонам, равны. АК = ВМ.
Из прямоугольного треугольника САК по теореме Пифагора найдем медиану АК:
АК = √(АС² + СК²) = √(а² + (a/2)²) = √(a² + a²/4) = √(5a²/4) = a√5/2
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, тогда
OK = ОМ = 1/3 AK = a√5/6
AO = ВО = 2·OK = a√5/3
Из треугольника ОКВ по теореме косинусов:
KB² = KO² + OB² - 2·KO·OB·cosα
a²/4 = (a√5/6)² + (a√5/3)² - 2 · a√5/6 · a√5/3 · cosα
a²/4 = 5a²/36 + 5a²/9 - 2 · 5a²/18 · cosα
1/4 = 5/36 + 5/9 - 5/9 · cosα
cosα = (25/36 - 1/4) : (5/9) = 16/36 · 9/5 = 4/9 · 9/5 = 4/5 = 0,8
По таблице Брадиса находим, что
α ≈ 37°