Примем АМ=МС=y
Примем КМ=х, тогда ВМ=х+1
По т.косинусов
АВ²=ВМ²+АМ²-2•ВМ•АМ•cos(BMA)
KC²=KM²+MC²-2•KM•MC•cos(KMC)
Угол ВМС смежный углу ВМА и равен 180°-45°=135°
cos 45°=√2/2
cos135°= -√2/2
Подставим в уравнения принятые значения отрезков:
АВ²=(х+1)²+у²-2•[(х+1)•у√2]/2
АВ²=х²+2х+1+у² -ху√2-y√2⇒
AB²=х²+у²+2х+1-ху√2-y√2 (1)
КС²=х²+у²-2ху•(-√2/2)
KC²=x²+y²+xy√2 (2)
По условию АВ=КС => уравнение 1=уравнению 2
Вычтя из уравнения (2) уравнение (1), получим
0=ху√2-2х-1+ху√2+y√2 =>
(2xy√2+y√2) - (2х+1)=0
y√2(2x+1)-(2x+1)=0
Сократим на (2х+1)
y√2-1=0
y√2=1 =>
y=1/√2
AC=2y=2/√2=√2
1. Тело вращения - два конуса одинакового радиуса, с образующими 15 см и 13 см.
Найдем радиус: по Пифагору R² = 15² - Х² (1) и R² = 13² - (14-Х)² (2).
Приравняем (1) и (2).
15² - Х² = 13² - (14-Х)² => X = 9см. Тогда R = 12 см.
Sбок = S1+S2.
S1 = πRL1 = π*9*15 =135π.
S2 = πRL2 = π*9*13 =117π.
Sбок= 252π.
ответ: S/π = 252.
2. Площадь основания конуса - Q, а площадь боковой поверхности - 2Q. Под каким углом его образующая наклонена к плоскости основания?
So = πR² = Q. Sбок = πRL. =2Q. (формулы) => 2πR= πL => L=2R.
Образующая (гипотенуза) в 2 раза больше радиуса.
Значит угол против радиуса в осевом сечении конуса равен 30°, а угол между образующей и плоскостью основания = 60°.
ответ: угол равен 60°
Примем АМ=МС=y
Примем КМ=х, тогда ВМ=х+1
По т.косинусов
АВ²=ВМ²+АМ²-2•ВМ•АМ•cos(BMA)
KC²=KM²+MC²-2•KM•MC•cos(KMC)
Угол ВМС смежный углу ВМА и равен 180°-45°=135°
cos 45°=√2/2
cos135°= -√2/2
Подставим в уравнения принятые значения отрезков:
АВ²=(х+1)²+у²-2•[(х+1)•у√2]/2
АВ²=х²+2х+1+у² -ху√2-y√2⇒
AB²=х²+у²+2х+1-ху√2-y√2 (1)
КС²=х²+у²-2ху•(-√2/2)
KC²=x²+y²+xy√2 (2)
По условию АВ=КС => уравнение 1=уравнению 2
Вычтя из уравнения (2) уравнение (1), получим
0=ху√2-2х-1+ху√2+y√2 =>
(2xy√2+y√2) - (2х+1)=0
y√2(2x+1)-(2x+1)=0
Сократим на (2х+1)
y√2-1=0
y√2=1 =>
y=1/√2
AC=2y=2/√2=√2
1. Тело вращения - два конуса одинакового радиуса, с образующими 15 см и 13 см.
Найдем радиус: по Пифагору R² = 15² - Х² (1) и R² = 13² - (14-Х)² (2).
Приравняем (1) и (2).
15² - Х² = 13² - (14-Х)² => X = 9см. Тогда R = 12 см.
Sбок = S1+S2.
S1 = πRL1 = π*9*15 =135π.
S2 = πRL2 = π*9*13 =117π.
Sбок= 252π.
ответ: S/π = 252.
2. Площадь основания конуса - Q, а площадь боковой поверхности - 2Q. Под каким углом его образующая наклонена к плоскости основания?
So = πR² = Q. Sбок = πRL. =2Q. (формулы) => 2πR= πL => L=2R.
Образующая (гипотенуза) в 2 раза больше радиуса.
Значит угол против радиуса в осевом сечении конуса равен 30°, а угол между образующей и плоскостью основания = 60°.
ответ: угол равен 60°