1)Решение 1) угол АОВ = 180 - 60 =120 градусов 2) Проведём биссектрису СК. Она пройджёт через точку О и будет одновременно медианой то есть АК =6/2=3см и высотой, то есть угол АКО =90 градусов и угол АОК = 120/2 =60 градусов 3) Из тр-ка АКО имеем АО = АК/ sin60 = 3 : ( √3/2) = 2√3 4) По свойству медиан АА1 = 1,5АО =1,5 *2√3 =3√3 ответ АА1 =3√3
2)пусть одна сторона-х, тогда другая- 13-х, по теореме косинусов сост. уравнение: x^2+(13-x)^2-2*x*(13-x)*cos60=49 x^2+169-26x+x^2-13x+x^2=49 3x^2-39x+120=0 x^2-13x+40=0 D=169-160=9 x1=(13+3)\2=8 x2=(13-3)\2=5 х=8-одна боковая сторона, 13-8=5-другая или наоборот х=5, 13-5=8.
Для решения данной задачи вспомним свойство равнобедренного треугольника: биссектриса проведенная из вершины угла равнобедренного треугольника к основанию является его высотой и медианой. Таким образом задача сводится к решению двух подзадач. 1. построение биссектрисы угла; 2. построение перпендикуляра к прямой через заданную точку. Решения: 1. раскроем циркуль на удобное расстояние и, поставив ножку на т. А сделаем засечки на лучах угла; не изменяя раствора циркуля, поставив его ножку на сделанные засечки, сделаем еще две до пересечения; полученная т. А1 принадлежит биссектрисе, проводим её. 2. раскроем циркуль на расстояние большее чем расстояние от т. М до биссектрисы и, поставив ножку на т. М сделаем засечки на АА1; не меняя раствор циркуля ставим ножку на засечки и делаем новые засечки с другой стороны АА1; получаем точку М1; прямая ММ1 перпендикулярна АА1 и точки В и С - пересечения с углом А образуют равнобедренный треугольник АВС с основанием ВС которому принадлежит т. М.
1) угол АОВ = 180 - 60 =120 градусов
2) Проведём биссектрису СК. Она пройджёт через точку О и будет одновременно медианой
то есть АК =6/2=3см и высотой, то есть угол АКО =90 градусов и угол АОК = 120/2 =60 градусов
3) Из тр-ка АКО имеем АО = АК/ sin60 = 3 : ( √3/2) = 2√3
4) По свойству медиан АА1 = 1,5АО =1,5 *2√3 =3√3
ответ АА1 =3√3
2)пусть одна сторона-х, тогда другая- 13-х, по теореме косинусов сост. уравнение:
x^2+(13-x)^2-2*x*(13-x)*cos60=49
x^2+169-26x+x^2-13x+x^2=49
3x^2-39x+120=0
x^2-13x+40=0
D=169-160=9 x1=(13+3)\2=8 x2=(13-3)\2=5
х=8-одна боковая сторона, 13-8=5-другая или наоборот х=5, 13-5=8.
Таким образом задача сводится к решению двух подзадач.
1. построение биссектрисы угла;
2. построение перпендикуляра к прямой через заданную точку.
Решения:
1. раскроем циркуль на удобное расстояние и, поставив ножку на т. А сделаем засечки на лучах угла;
не изменяя раствора циркуля, поставив его ножку на сделанные засечки, сделаем еще две до пересечения;
полученная т. А1 принадлежит биссектрисе, проводим её.
2. раскроем циркуль на расстояние большее чем расстояние от т. М до биссектрисы и, поставив ножку на т. М сделаем засечки на АА1;
не меняя раствор циркуля ставим ножку на засечки и делаем новые засечки с другой стороны АА1;
получаем точку М1;
прямая ММ1 перпендикулярна АА1 и точки В и С - пересечения с углом А образуют равнобедренный треугольник АВС с основанием ВС которому принадлежит т. М.