3. Длина отрезка LM = 6 см, длина отрезка MS = 15 см. Точки L, M, S расположены на одной прямои. Какои может быть длина отрезка LS - ? Напишите два решения задачи. ( ) Мой ответ
Диагональ делит трапецию на два треугольника с основаниями ВС и АД, длина которых вдвое больше средней линии каждого треугольника. Тогда ВС=4 см, АД=10 см. Проведем СР||АВ Противоположные стороны четырехугольника АВСР параллельны. АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см РД=АД-АР=10-4=6 см Все стороны треугольника РСД равны. Треугольник РСД - равносторонний. Все углы равностороннего треугольника равны 60°. ∠ ВСР=∠ВАР=60° ∠ВСД=СВА=60°+60°=120° Углы при каждом из оснований равнобедренной трапеции равны. Острые углы данной трапеции равны 60°, тупые - 120°.
Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д
Проведем СР||АВ
Противоположные стороны четырехугольника АВСР параллельны.
АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см
РД=АД-АР=10-4=6 см
Все стороны треугольника РСД равны.
Треугольник РСД - равносторонний.
Все углы равностороннего треугольника равны 60°.
∠ ВСР=∠ВАР=60°
∠ВСД=СВА=60°+60°=120°
Углы при каждом из оснований равнобедренной трапеции равны.
Острые углы данной трапеции равны 60°, тупые - 120°.