Задачки на теорему Пифагора, в довольно странной форме. Если говорят, что лестница в пяти метрах от стены - то обычно это означает, что любая часть лестницы находится в пяти метрах от стены Дальше везде обозначаем длину лестницы - L расстояние, на которое отнесён них лестницы от стены - а и высота, на которой верх лестницы касается стены - h a) L = 13 м a = 5 м h - ? L² = a² + h² h² = L² - a² = 13² - 5² = 169 - 25 = 144 h = √144 = 12 м б) a = 5 м h = 10 м L - ? L² = a² + h² = 5² + 10² = 25 + 100 = 125 L = √125 = 5√5 м в) L = 15 м h = 12 м a - ? L² = a² + h² a² = L² - h² = 15² - 12² = 225 - 144 = 81 a = √81 = 9 м
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
Дальше везде обозначаем длину лестницы - L
расстояние, на которое отнесён них лестницы от стены - а
и высота, на которой верх лестницы касается стены - h
a)
L = 13 м
a = 5 м
h - ?
L² = a² + h²
h² = L² - a² = 13² - 5² = 169 - 25 = 144
h = √144 = 12 м
б)
a = 5 м
h = 10 м
L - ?
L² = a² + h² = 5² + 10² = 25 + 100 = 125
L = √125 = 5√5 м
в)
L = 15 м
h = 12 м
a - ?
L² = a² + h²
a² = L² - h² = 15² - 12² = 225 - 144 = 81
a = √81 = 9 м
1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К.
2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС.
3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.