3 Класи посадили дерева вздовж дороги. 1-й клас посадив 36% усіх дерев, другий клас посадив 3/5 остачі, а третій решту 104 дерева, скільки дерев посадили 3 лкси разом?
Углы при основании равны (180-50)/2 = 65°. Примем длину боковых сторон АВ и ВС по 1. Тогда сторона АС = 2*1*cos 65° = 2*1* 0.4226183 = 0.8452365. Длина медианы АД равна:
Подставляем длины сторон: АД=(1/2)√(2* 0,8452365²+2*1²-1²) = 0,7792383.
Теперь рассмотрим треугольник АВД. Сторона АВ(с) = 1, ВД(а) = 0,5, АД(в) = 0.7792383. По теореме косинусов: cosBAD = (b²+c²-a²)/2ab. Подставив длины сторон, получаем: cosBAD = (0.7792383²+1²-0,5²)/(2*0.7792383*1) = 0.8708583. Угол BAD = arc cos 0.8708583 = 0,5138505 радиан = 29,441464°.
внешний угол при вершине А больше внешнего угла при вершине B в 3раза. Внешний угол - это разность между 180° и внутренним углом. То есть внешний угол при вешине А равен 180°- A, при вершине B 180°- B. Т.к. При вершине А внешний угол больше в 3раза, то
Тогда угол C равен 180°- 100°- 20° = 60°
Внешние углы равны:
при вершине А 180°- 20° = 160°;
при вершине B 180°- 100°= 80°;
при вершине C 180°- 60° = 120°.
Наибольшая разность - это разность между максимальным значением и минимальным, т.е. 160°- 80° = 80°, разность между внешними углами при А и при С.
Примем длину боковых сторон АВ и ВС по 1.
Тогда сторона АС = 2*1*cos 65° = 2*1* 0.4226183 = 0.8452365.
Длина медианы АД равна:
Подставляем длины сторон:
АД=(1/2)√(2* 0,8452365²+2*1²-1²) = 0,7792383.
Теперь рассмотрим треугольник АВД.
Сторона АВ(с) = 1, ВД(а) = 0,5, АД(в) = 0.7792383.
По теореме косинусов:
cosBAD = (b²+c²-a²)/2ab.
Подставив длины сторон, получаем:
cosBAD = (0.7792383²+1²-0,5²)/(2*0.7792383*1) = 0.8708583.
Угол BAD = arc cos 0.8708583 = 0,5138505 радиан = 29,441464°.
Так что 30 градусов - это неточно.
внешний угол при вершине А больше внешнего угла при вершине B в 3раза. Внешний угол - это разность между 180° и внутренним углом. То есть внешний угол при вешине А равен 180°- A, при вершине B 180°- B. Т.к. При вершине А внешний угол больше в 3раза, то
Тогда угол C равен 180°- 100°- 20° = 60°
Внешние углы равны:
при вершине А 180°- 20° = 160°;
при вершине B 180°- 100°= 80°;
при вершине C 180°- 60° = 120°.
Наибольшая разность - это разность между максимальным значением и минимальным, т.е. 160°- 80° = 80°, разность между внешними углами при А и при С.