1см
Объяснение:
Дано:AB и CD — хорды;
M — точка пересечения хорд
;AB=12 см;
CM=2 см;
DM=5,5 см.
Обозначим AM за x.
Тогда BM=AB?x=12?x.
2. Теорема о пересекающихся хордах: если две хорды пересекаются, то произведение отрезков одной хорды равно произведению отрезков второй хорды.
AM?MB=CM?MD
3. Подставляем в данное соотношение обозначенные величины и вычисляем x:
x?(12?x)=2?5,5
12x?x2=11
x2?12x+11=0
{x1?x2=11x1+x2=12
x1=11 см
x2=1 см
Так как сумма обоих корней равна 12 см, т.е. длине AB, то можно сделать вывод, что хорда AB делится соответственно на части 11 см и 1 см.
ответ:Так как сумма обоих корней равна 12 см, т.е. длине AB, то можно сделать вывод, что хорда AB делится соответственно на части 11 см и 1 см.
Объяснение:Дано:
AB и CD — хорды;
M — точка пересечения хорд;
AB=12 см;
1. Обозначим AM за x. Тогда BM=AB−x=12−x.
AM×MB=CM×MD
x×(12−x)=2×5,5
12x−x2=11
x2−12x+11=0
{x1×x2=11x1+x2=12
1см
Объяснение:
Дано:AB и CD — хорды;
M — точка пересечения хорд
;AB=12 см;
CM=2 см;
DM=5,5 см.
Обозначим AM за x.
Тогда BM=AB?x=12?x.
2. Теорема о пересекающихся хордах: если две хорды пересекаются, то произведение отрезков одной хорды равно произведению отрезков второй хорды.
AM?MB=CM?MD
3. Подставляем в данное соотношение обозначенные величины и вычисляем x:
x?(12?x)=2?5,5
12x?x2=11
x2?12x+11=0
{x1?x2=11x1+x2=12
x1=11 см
x2=1 см
Так как сумма обоих корней равна 12 см, т.е. длине AB, то можно сделать вывод, что хорда AB делится соответственно на части 11 см и 1 см.
ответ:Так как сумма обоих корней равна 12 см, т.е. длине AB, то можно сделать вывод, что хорда AB делится соответственно на части 11 см и 1 см.
Объяснение:Дано:
AB и CD — хорды;
M — точка пересечения хорд;
AB=12 см;
CM=2 см;
DM=5,5 см.
1. Обозначим AM за x. Тогда BM=AB−x=12−x.
2. Теорема о пересекающихся хордах: если две хорды пересекаются, то произведение отрезков одной хорды равно произведению отрезков второй хорды.
AM×MB=CM×MD
3. Подставляем в данное соотношение обозначенные величины и вычисляем x:
x×(12−x)=2×5,5
12x−x2=11
x2−12x+11=0
{x1×x2=11x1+x2=12
x1=11 см
x2=1 см