Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на отрезки, из которых меньший равен полуразности оснований, больший – их полусумме. (Можно провести вторую высоту из вершины второго тупого угла и получить тот же результат)
АН=(АD-ВС):2=2 см
НD=18-2=16 см
∆ АВD - прямоугольный по условию.
АН –проекция АВ на гипотенузу, HD - проекция BD на гипотенузу.
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Т.е. квадрат высоты равен произведению отрезков, на которые она делит гипотенузу.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
В трапеции АВСD проведем высоту ВН.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на отрезки, из которых меньший равен полуразности оснований, больший – их полусумме. (Можно провести вторую высоту из вершины второго тупого угла и получить тот же результат)
АН=(АD-ВС):2=2 см
НD=18-2=16 см
∆ АВD - прямоугольный по условию.
АН –проекция АВ на гипотенузу, HD - проекция BD на гипотенузу.
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Т.е. квадрат высоты равен произведению отрезков, на которые она делит гипотенузу.
ВН²=АН•НD
ВН=√(2•16)=√32
Из прямоугольного ∆ АВН по т.Пифагора
АВ=√(ВН²+АН²)=√(32+4)=6 см