ответ: 552 см²
Объяснение: Назовём трапецию АВСD, ВС||AD; АВ перпендикулярна основаниям.
AB:CD=4:5;
AD-BC=18 см
BD=40 см
————————
Примем коэффициент отношения боковых сторон равным х. Тогда АВ=4х, СD=5х.
Трапеция прямоугольная, поэтому высота СН параллельна и равна АВ.
Из ∆ СНD по т.Пифагора CH²+HD²=СD²⇒
HD²=25x²-16x²=9x²⇒
HD=3x.
АВСН - прямоугольник, АН=ВС. Так как АD-BC=18 см, то НD=18 см, т.е. 3х=18, х=6 см.
АВ=4х=24 см
По т.Пифагора из ∆ АВD
АD²=BD²-AB²
AD=√(1600-576)=32 ⇒
BC=32-18=14 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
S(ABCD)=0,5•(BC+AD)•CH
S(ABCD)=552 см²
ответ: 15,777π, иначе 49,54 (ед. площади)
Объяснение: Формула площади круга S(кр)=πr^2
Нужный радиус можно найти по одной из формул площади треугольника:
S = r•р, где р — полупериметр, r — радиус вписанной окружности⇒
r=S/p
По другой формуле Ѕ ∆ MKN=MK•NK•sin30°/2.
Ѕ=20•20•0,5/2=100 (ед.площади).
Для нахождения периметра третью сторону найдем по той же формуле, но с другой стороной:
Ѕ(MKN)=МК•МN•sin(KMN)/2
∆MKN - равнобедренный, ⇒углы при МN=(180°-30°)/2=75°
sin75°≈0,9659
100=20•MN•0,9659/2⇒
MN≈10,353
p(MKN)=0,5•(2•20+10,353)≈25,1765
r=S/p=100/25,1765≈3,972
Ѕ(круга)=πr²=15,777π или при π=3,14 S(круга)=49,54 (ед. площади)
ответ: 552 см²
Объяснение: Назовём трапецию АВСD, ВС||AD; АВ перпендикулярна основаниям.
AB:CD=4:5;
AD-BC=18 см
BD=40 см
————————
Примем коэффициент отношения боковых сторон равным х. Тогда АВ=4х, СD=5х.
Трапеция прямоугольная, поэтому высота СН параллельна и равна АВ.
Из ∆ СНD по т.Пифагора CH²+HD²=СD²⇒
HD²=25x²-16x²=9x²⇒
HD=3x.
АВСН - прямоугольник, АН=ВС. Так как АD-BC=18 см, то НD=18 см, т.е. 3х=18, х=6 см.
АВ=4х=24 см
По т.Пифагора из ∆ АВD
АD²=BD²-AB²
AD=√(1600-576)=32 ⇒
BC=32-18=14 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
S(ABCD)=0,5•(BC+AD)•CH
S(ABCD)=552 см²
ответ: 15,777π, иначе 49,54 (ед. площади)
Объяснение: Формула площади круга S(кр)=πr^2
Нужный радиус можно найти по одной из формул площади треугольника:
S = r•р, где р — полупериметр, r — радиус вписанной окружности⇒
r=S/p
По другой формуле Ѕ ∆ MKN=MK•NK•sin30°/2.
Ѕ=20•20•0,5/2=100 (ед.площади).
Для нахождения периметра третью сторону найдем по той же формуле, но с другой стороной:
Ѕ(MKN)=МК•МN•sin(KMN)/2
∆MKN - равнобедренный, ⇒углы при МN=(180°-30°)/2=75°
sin75°≈0,9659
100=20•MN•0,9659/2⇒
MN≈10,353
p(MKN)=0,5•(2•20+10,353)≈25,1765
r=S/p=100/25,1765≈3,972
Ѕ(круга)=πr²=15,777π или при π=3,14 S(круга)=49,54 (ед. площади)