3.Начертите отрезок DC длиной 3см и отметьте точку М, не принадлежащую этому отрезку. Постройте отрезок с центром гомотетии в точке Ми коэффициентом: а). k =-1/3, b).k = 2,5.
Пусть сторона основания равна 2а. Половина стороны а, боковое ребро 10 и апофема d образуют прямоугольный треугольник, тогда по теореме Пифагора d=sqrt(100 - a^2)
Sбок = (Pd)/2, где Р - периметр основания. Значит: 6a*sqrt(100 - a^2)/2 = 144,
Проведём из точки d наклонные da и dc.
а) Проекция тр-ка dbc на плоскость abc - сторона bc тр-ка аbc, т.к. плоскость dbc перпендикулярна плоскости abc, а линией их пересечения является bc.
б) Тр-к adc - равнобедренный, в нём медиана dk является и высотой, поэтому является расстоянием от точки d до прямой ас.
Соединим тоски b и k. bk является расстоянием от точки b до прямой ас в тр-ке abc.
Тр-к abc равнобедренный, поэтому bk = √(ab² - (0.5ac)²)
bk = √(10² - (0.5·12)²) = √(100 - 36) = √(64) = 8
Тр-к dbk - прямоугольный с гипотенузой dk, поэтому
dk = √(db² + bk²) = √(15² + 8²) = √(225 + 64) = √289 = 17
ответ: 17см
Пусть сторона основания равна 2а. Половина стороны а, боковое ребро 10 и апофема d образуют прямоугольный треугольник, тогда по теореме Пифагора d=sqrt(100 - a^2)
Sбок = (Pd)/2, где Р - периметр основания. Значит: 6a*sqrt(100 - a^2)/2 = 144,
3a*sqrt(100-a^2) = 144, a*sqrt(100-a^2)=48, a^2(100 - a^2) = 2304,
a^4 - 100a^2+2304=0 , a^2= 64 или 36, т.е. a=8 или 6. Тогда сторона основания равна
2a=16 или 12. Соответственно, апофема равна sqrt(100-64)=6 или sqrt(100-36)=8
ответ: 16 и 6 или 12 и 8