3)Площадь основания правильной четырехугольной пирамиды равна 25см2. Апофема
10см. Найти площадь поверхности пирамиды.
4) Боковая грань правильной четырехугольной пирамиды наклонена к плоскости
основания под углом 450 Найти площадь поверхности, если ее высота равна 8см.
5)Постройте сечение:
Объяснение:
3)Пирамида называется правильной, если ее основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.
Т.к. четырехугольная пирамиды правильная , то в основании квадрат. Найдем сторону квадрата : х²=25, х=5.
Проведем апофему МР⊥ВС, О-точка пересечения диагоналей.
АВ=5 см, ОР=2,5 см
S(полн)=S(осн)+S(бок) , S(бок)=0,5 Р(осн)*h.
ΔОРМ- прямоугольный, по т. Пифагора ОМ²=МР²-ОР², ОМ²=10²-2,5²,
ОМ=√(195/2) см
S(бок)=0,5 Р(осн)*h, S(бок)=0,5*20 *√(195/2)=10√(195/2) ( см²).
S(полн)=25+10√(195/2) ( см²)