Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
1. Дано: ΔАВС, АВ>BC>AC.один из углов треугольника равен 120 градусов,а другой 40 градусов
Найти: углы A,B,C
Решение: Сумма углоа треугольника = 180 градусов. значит третий угол = 180 - (120+40) = 20 градусов.
Значит углы в треугольнике равны 120, 40, 20.
В треугольнике напротив бОльшей стороны лежит бОльшй угол. Напротив АВ лежит угол С, значит ∠С=120.
Напротив ВС лежит угол А, значит ∠А=40
Напротив АС - угол В, значит ∠В = 20
ответ: ∠В=20, ∠А=40, ∠С=120
2задача.
Дано: ΔАВС, ∠А=50°, ∠С=12*∠В
Найти: ∠В, ∠С
Решение:
Сумма углов треугольника = 180°. Значит ∠В+∠С=180-∠А = 180°-50°=130°
Пусть ∠В-х, тогда ∠С=12х, тогда ∠В+∠С=12х+х=12х, что равно 130°
13х=130
х=10° - ∠В
12*10°=120°-∠С
ответ: 10° и 120°
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.