3. Решите задачу: Точки А, В, С лежат на окружности с центром О. Отрезок АС является диаметром окружности. Чему равен угол АВС? ( применить теорему о вписанном угле)
Построение к решениям заданий 1, 2 и 3 см. на фото.
1) 1¹ - проекция точки пересечения прямой и плоскости, т. к. плоскость фронтально проецирующая. Горизонтальную проекцию точки пересечения можно найти с третьей проекции.
Расстояние от оси х до точки 1 взято с профильной проекции и отмечено фигурной скобкой.
Точка n¹ находится ниже а¹b¹c¹, значит на горизонтальной проекции n и часть прямой до точки пересечения невидимая.
2) g и g₁¹- проекции горизонтали, f и f¹ - проекции фронтали.
3) Т.к. ВЕ:ЕС=1:2, отступим отрезок е¹с¹ в два раза больше b¹е¹. Получим точку с¹. АВСD -параллелограмм, значит проекции противоположных сторон а¹b¹с¹d¹ и аbсd параллельны.
АЕ - высота, следовательно ек перпендикулярен горизонтальной проекции горизонтали bc. Сносим на проекцию ек точку а и достраиваем параллелограмм.
Пусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEFПусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEFПусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEFПусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEF
Построение к решениям заданий 1, 2 и 3 см. на фото.
1) 1¹ - проекция точки пересечения прямой и плоскости, т. к. плоскость фронтально проецирующая. Горизонтальную проекцию точки пересечения можно найти с третьей проекции.
Расстояние от оси х до точки 1 взято с профильной проекции и отмечено фигурной скобкой.
Точка n¹ находится ниже а¹b¹c¹, значит на горизонтальной проекции n и часть прямой до точки пересечения невидимая.
2) g и g₁¹- проекции горизонтали, f и f¹ - проекции фронтали.
3) Т.к. ВЕ:ЕС=1:2, отступим отрезок е¹с¹ в два раза больше b¹е¹. Получим точку с¹. АВСD -параллелограмм, значит проекции противоположных сторон а¹b¹с¹d¹ и аbсd параллельны.
АЕ - высота, следовательно ек перпендикулярен горизонтальной проекции горизонтали bc. Сносим на проекцию ек точку а и достраиваем параллелограмм.
Надеюсь,что вам. Желаю удачи!
Пусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEFПусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEFПусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEFПусть даны два прямоугольных треугольника ABC и DEF, стороны прямоугольного треугольника ABC равны 6, 8 и 10 см, угол А=30 градусов, гипотенуза DF треугольника DEF равна 10 см и угол D=30 градусов. Найти катеты треугольника DEF