3. Сквер имеет форму равнобедренной трапеции. По диагоналям этой трапеции проходят прогулочные на пересечении которых находится фонтан. На каком расстоянии находится фонтан от концов аллеи, если е
тина 1500 м, алины паралельных границ сквера 900 ми 1350 м?
а) ответ да. Прямые параллельны, если они лежат на одной плоскости, перпендикулярной двум первым плоскостям.
красные прямые лежат в параллельных плоскостях и при этом параллельны в третьей плоскости
б) ответ нет. Признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Т. е. если прямая по условию находится в параллельной плоскости, она не как не может эту плоскость пересекать
SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2)
64√3=(1/4)a²√3, a²=256, a=16
основание Δ обозначим с.
рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания.
cos 30°=(c/2)/a
√3/2=(c/2)/16, √3/2=c/32, c=16√3
ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2.
пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы)
по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3
SΔ=(1/2)*c*h
64√3=(1/2)*2x√3*x
64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см
ответ: 16,16 и 16√3