3. Сторона АВ треугольника АВС равна 15 см. Сторона АС разделена на 3 равные части и через точки деления проведены прямые, параллельные стороне АВ. Найдите длины отрезков этих прямых, содержащихся между сторонами треугольника развёрнутый ответ
1)Высота прямоугольного треугольника, проведенного из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. т.е. H= корень из (18*2) = 6. Рассмотрим один из образовавшихся треугольников. В нём угол, который образует высота, равен 90. ПО т. Пифагора: b= корень (18^2+6^2) = корень из 360. Теперь по т. Пифагора ля всего треугольника. а = корень из ((18+2)^2 - (корень из 360)^2) = корень из 40 Находим площадь, S=1/2 ab S= 1/2*корень из 40* корень из 360 = 60.
Если окружность вписанная, то подходит формула r=(a*√3)/6 Теперь просто подставляем и решаем: 4*6=(a*√3) 24=a*√3 a=24/√3 Возведём обе части в квадрат a*a=576/3 a*a=192 a=8√3 ответ: a=8√3
т.е. H= корень из (18*2) = 6.
Рассмотрим один из образовавшихся треугольников. В нём угол, который образует высота, равен 90. ПО т. Пифагора: b= корень (18^2+6^2) = корень из 360.
Теперь по т. Пифагора ля всего треугольника. а = корень из ((18+2)^2 - (корень из 360)^2) = корень из 40
Находим площадь, S=1/2 ab
S= 1/2*корень из 40* корень из 360 = 60.
Теперь просто подставляем и решаем: 4*6=(a*√3)
24=a*√3
a=24/√3 Возведём обе части в квадрат a*a=576/3
a*a=192
a=8√3
ответ: a=8√3