3.Сторона.В треугольника АВСравна 15 см. Сторона АСразделена на 3 равные частии через точаи деления проведены прямые, парательные стороне BC.Найдите длины отрезков этих прямых, содержащихся между сторонами треугольника [4]
Угол ВМО - линейный угол двугранного угла, образованного плоскостью треугольника с данной плоскостью α. ВМ и МN перпендикулярны АС, значит плоскость ANC (плоскость α) перпендикулярна плоскости BMN. Углы между наклонными (две другие стороны треугольника) и плоскостью - это углы между этими наклонными и их проекциями на эту плоскость. Перпендикуляр ВО к плоскости α лежит в плоскости BMN (О на прямой MN). Надо найти синусы углов ВСО и ВАО. Прямоугольные треугольники ВАО и ВСО равны по гипотенузе и катету. Углы ВСО и ВАО равны. Из прямоугольного треугольника ВМО : , sinВСО = sin ВАО = ответ
АС - ВD = 10см
Нехай ВD = х см, АС = 10 + х см
Діагоналі перетинаються під прямим кутом і діляться навпіл.
СО = ОА = (10 + х) / 2
ВО = ОD = х/2
Розглянемо трикутника ВСО:
O = 90градусів
за т. Піфагора:
ВС² = ВО² + СО²
25² = ((10 + х)/2)² + (х/2)²
625 = (100 + 20х + х²)/4 + х²/4
625 = (100 + 20х + 2х²) / 4
625 = (2 * (х² + 10х + 50)) / 4
625 = (х² + 10х + 50) / 2
1250 = х² + 10х + 50
х² + 10х - 1200 =0
Д = 70²
х1 = 30, х2 = -40
х2 = -40 -незадовільняє умову
Отже ВD = 30 см, АС = 30 + 10 = 40 см
S = 1/2 * АС * ВD = 1/2 * 30 * 40 = 600 см²
Надо найти синусы углов ВСО и ВАО.
Прямоугольные треугольники ВАО и ВСО равны по гипотенузе и катету. Углы ВСО и ВАО равны.
Из прямоугольного треугольника ВМО : ,
sinВСО = sin ВАО =
ответ