6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.
Дано: Δ АВС
∠С = 90°
АК - биссектр.
АК = 18 см
КМ = 9 см
Найти: ∠АКВ
Решение.
Т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) К на гипотенузу АВ и обозначим это расстояние КМ.
Рассмотрим полученный Δ АКМ, Т.к. ∠АМК = 90°,то АК гипотенуза, а КМ - катет. Поскольку, исходя из условия, катет КМ = 9/18 = 1/2 АК, то ∠КАМ = 30°.
Т.к. по условию АК - биссектриса, то ∠САК =∠КАМ = 30°
Рассмотрим ΔАКС. По условию ∠АСК = 90°; а∠САК = 30°, значит, ∠АКС = 180° - 90° - 30° = 60°
Искомый ∠АКВ - смежный с ∠АКС, значит, ∠АКВ = 180° - ∠АКС = 180° - 60° = 120°
ответ: 120°
6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
d^2 = a^2 + b^2,
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.
Дано: Δ АВС
∠С = 90°
АК - биссектр.
АК = 18 см
КМ = 9 см
Найти: ∠АКВ
Решение.
Т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) К на гипотенузу АВ и обозначим это расстояние КМ.
Рассмотрим полученный Δ АКМ, Т.к. ∠АМК = 90°,то АК гипотенуза, а КМ - катет. Поскольку, исходя из условия, катет КМ = 9/18 = 1/2 АК, то ∠КАМ = 30°.
Т.к. по условию АК - биссектриса, то ∠САК =∠КАМ = 30°
Рассмотрим ΔАКС. По условию ∠АСК = 90°; а∠САК = 30°, значит, ∠АКС = 180° - 90° - 30° = 60°
Искомый ∠АКВ - смежный с ∠АКС, значит, ∠АКВ = 180° - ∠АКС = 180° - 60° = 120°
ответ: 120°