3.В окружности с центром в точке О проведена хорда АВ равная радиусу окружности. Диаметр ЕК перпендикулярен хорде АВ и
пересекается с этой хордой в точке М. Длина отрезка АМ равна 8
см .По условию задачи выполнить:
А) Записать дано и выполнить чертеж.
Б) Определить длину хорды АВ
В) Определить длину диаметра ЕК
Г) Найти периметр треугольника АОВ.
Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
Объяснение:
Дано:
Прямоугольный треугольник АВС
угол С = 90 градусов,
АВ — гипотенуза,
АВ = 8,
угол А = 45 градусов.
Найти площадь треугольника АВС, то есть S АВС — ?
1. Рассмотрим прямоугольный треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов. Тогда угол В = 180 - угол А - угол С;
угол В = 180 - 45 - 90;
угол В = 45 градусов.
Следовательно прямоугольный треугольник АВС является еще и равнобедренным, тогда АС = ВС.
2. По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2 ( пусть АВ = ВС = х сантиметров);
х^2 + х^2 = 8^2 ;
2 * х^2 = 64;
х^2 = 64 : 2;
х^2 = 32.
3. S АВС = 1/2 * АС * ВС;
S АВС = 1/2 * 32;
S АВС = 16.
ответ: 16.