Каноническое уравнение прямой, проходящей через точки А(х1;у1) и В(х2;у2): (X-x1)/(x2-x1)=(Y-y1)/(y2-y1). направляющий вектор этой прямой: p{p1;p2}, или p{(x2-x1);(y2-y1)}. Тогда вектор нормали (перпендикуляр к) этой прямой: n{p2;-p1} или n{(y2-y1);-(x2-x1)}. Этот же вектор - направляющий вектор для прямой L, проходящей через точку М((x1+x2)/2;(y1+y2)/2) - середину прямой АВ. Формула для уравнения прямой, проходящей через точку M((x1+x2)/2;(y1+y2)/2) и имеющей направляющий вектор рm{(y2-y1);-(x2-x1)}, то есть уравнение прямой L: (X-(x1+x2)/2))/(y2-y1)=(Y-(y1+y2)/2)/-(x2-x1) - каноническое уравнение. Или: X(x2-x1) + Y(y2-y1) -(1/2)*[x2²-x1²+y2²-y1²] - общее уравнение с коэффициентами А=(x2-x1), В=(y2-y1) и С= -(1/2)*[x2²-x1²+y2²-y1²].
Второй вариант (для тех, кто еще не знает о направляющих и нормальных векторах, но знают о различных видах уравнений прямых): из канонического уравнения имеем: X(y2-y1)-x1(y2-y1)=Y(x2-x1)-y1(x2-x1) => Y(x2-x1)=X(y2-y1)-y1(x2-x1) => Y=X((y2-y1)/(x2-x1) -x1(y2-y1)/(x2-x1)+y1. Это уравнение прямой с угловым коэффициентом k=(y2-y1)/(x2-x1). Условие перпендикулярности прямых: k1=-1/k. Уравнение прямой L, перпендикулярной прямой AB и проходящей через точку М((x2+x1)/2;(y2+y1)/2)) (середина отрезка АВ), находим по формуле: Y-Ym=k1(X-Xm) или Y-(y2-y1)/2=-((x2-x1)/(y2-y1))*(X-(x2+x1)/2) отсюда общее уравнение прямой L: X(x2-x1)+Y(y2-y1)-(y2²-y1²)/2-(x2²-x1²)/2=0 или X(x2-x1) + Y(y2-y1) -(1/2)*(x2²-x1²+y2²-y1²).
Для проверки решения возьмем точки с реальными координатами и построим график(смотри приложение).
В градусах- с-ю=43 з-в=47 в километрах- с-ю=около 5212 з-в=около4800 Как получается: 1)в градусах : находишь крайние точки на карте, смотришь их координаты(в с-з широту, в з-в долготу), и вычитаешь из большего меньшее. 2)с-ю в километрах : сначала рассчитаем длину 1 градуса мередиана : s=pR/180, где s=искомая длина, R=радиус Земли, р=число пи(3,14). s=110 км Теперь умножим s на число градусов, уже нами найденное для с-ю(a), и получим c-ю в километрах(S) S=sa=110*43=около 5212 3)з-в в километрах вычисляется с линейки и масштаба : измеряем расстояние от 2 точек с разничей в долготе в полученное нами значение(47=б) в сантиметрах, и умножаем это на количество километров в 1 сантиметре(по масштабу)(L) S=бL. а вообще Протяженность: - С севера на юг по70 з. д.-7350 км -С запада на восток по 10 ю. ш. -465км; - Протяженность Южной Америки с севера на юг больше, чем с запада на восток
А(х1;у1) и В(х2;у2):
(X-x1)/(x2-x1)=(Y-y1)/(y2-y1).
направляющий вектор этой прямой:
p{p1;p2}, или p{(x2-x1);(y2-y1)}.
Тогда вектор нормали (перпендикуляр к) этой прямой:
n{p2;-p1} или n{(y2-y1);-(x2-x1)}.
Этот же вектор - направляющий вектор для прямой L, проходящей
через точку М((x1+x2)/2;(y1+y2)/2) - середину прямой АВ.
Формула для уравнения прямой, проходящей через точку
M((x1+x2)/2;(y1+y2)/2) и имеющей направляющий вектор
рm{(y2-y1);-(x2-x1)}, то есть уравнение прямой L:
(X-(x1+x2)/2))/(y2-y1)=(Y-(y1+y2)/2)/-(x2-x1) - каноническое уравнение.
Или:
X(x2-x1) + Y(y2-y1) -(1/2)*[x2²-x1²+y2²-y1²] - общее уравнение с коэффициентами А=(x2-x1), В=(y2-y1) и С= -(1/2)*[x2²-x1²+y2²-y1²].
Второй вариант (для тех, кто еще не знает о направляющих и нормальных векторах, но знают о различных видах уравнений прямых):
из канонического уравнения имеем:
X(y2-y1)-x1(y2-y1)=Y(x2-x1)-y1(x2-x1) =>
Y(x2-x1)=X(y2-y1)-y1(x2-x1) =>
Y=X((y2-y1)/(x2-x1) -x1(y2-y1)/(x2-x1)+y1.
Это уравнение прямой с угловым коэффициентом k=(y2-y1)/(x2-x1).
Условие перпендикулярности прямых: k1=-1/k.
Уравнение прямой L, перпендикулярной прямой AB и проходящей через точку М((x2+x1)/2;(y2+y1)/2)) (середина отрезка АВ), находим по формуле:
Y-Ym=k1(X-Xm) или
Y-(y2-y1)/2=-((x2-x1)/(y2-y1))*(X-(x2+x1)/2) отсюда общее уравнение прямой L:
X(x2-x1)+Y(y2-y1)-(y2²-y1²)/2-(x2²-x1²)/2=0 или
X(x2-x1) + Y(y2-y1) -(1/2)*(x2²-x1²+y2²-y1²).
Для проверки решения возьмем точки с реальными координатами и построим график(смотри приложение).
с-ю=43
з-в=47
в километрах-
с-ю=около 5212
з-в=около4800
Как получается:
1)в градусах : находишь крайние точки на
карте, смотришь их координаты(в с-з широту, в
з-в долготу), и вычитаешь из большего
меньшее.
2)с-ю в километрах : сначала рассчитаем
длину 1 градуса мередиана :
s=pR/180, где s=искомая длина, R=радиус
Земли, р=число пи(3,14).
s=110 км
Теперь умножим s на число градусов, уже нами
найденное для с-ю(a), и получим c-ю в
километрах(S)
S=sa=110*43=около 5212
3)з-в в километрах вычисляется с
линейки и масштаба : измеряем расстояние от
2 точек с разничей в долготе в полученное
нами значение(47=б) в сантиметрах, и
умножаем это на количество километров в 1
сантиметре(по масштабу)(L)
S=бL.
а вообще
Протяженность:
- С севера на юг по70 з. д.-7350 км
-С запада на восток по 10 ю. ш. -465км;
- Протяженность Южной Америки с севера на
юг больше, чем с запада на восток