3 ВАРИАНТ 1. Докажите, что параллелограмм АВСД и параллелограмм ABми , изображенные на рисунка, равновеликие и равносоставленные, если ДС IAB II Ком 2. Площадь треугольника ABC равна 108 см. Найдите высоту ВН, если ВС=АВ=15 см, а АС=18 см и определите вид треугольника 3. Найдите площадь равностороннего треугольника со стороной 9 см. 4. Найдите площадь треугольника со сторонами 3 м, 9, 10 м. Напишите на листочке нужно
Объяснение: 1. Угол b равен углу DAC т.к это р/б треугольник и можно найти углы A и C (180-36=144, делим на 2 так как углы равны, равняется 72). AD- биссектриса и делит угл A на 2 (72/2=36, значит BAD и DAC=36)
2. Угол C равен углу BDA так как треугольник BAD - р/б. Так как угл BAD=36 и ABD=36 можно найти BDA (180-36-36=72), а угл C=72 по первому пункту (так как угл A равен углу C как р/б треугольник).
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
Треугольник abd подобен adc.
Объяснение: 1. Угол b равен углу DAC т.к это р/б треугольник и можно найти углы A и C (180-36=144, делим на 2 так как углы равны, равняется 72). AD- биссектриса и делит угл A на 2 (72/2=36, значит BAD и DAC=36)
2. Угол C равен углу BDA так как треугольник BAD - р/б. Так как угл BAD=36 и ABD=36 можно найти BDA (180-36-36=72), а угл C=72 по первому пункту (так как угл A равен углу C как р/б треугольник).
Получается что Угол B=DAC и угол C=BDA
Значит подобны по первому признаку по двум углам
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .