1. Рассмотрим треугольники ABD и DCA (не забываем, что важно правильно назвать треугольники!).
1) AC=BD (по условию).
2) Сторона AD — общая.
3) AB=CD (как противолежащие стороны параллелограмма).
Следовательно, треугольники ABD и DCA равны (по трем сторонам).
2. Из равенства треугольников следует равенство соответствующих углов:
∠BAD=∠CDA.
3. ∠BAD+∠CDA=180º.(как внутренние накрест лежащие углы при AB ∥ CD и секущей AD).
Пусть ∠BAD=∠CDA=xº, тогда
x+x=180
2x=180
x=90
4. Значит, ∠BAD=∠CDA=90º. Следовательно, ABCD — параллелограмм, у которого есть прямой угол. Отсюда, ABCD — прямоугольник ( по второму признаку прямоугольника).
Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так. Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления. МО=3, как катет, лежащий против угла в 30° Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания. Далее вспоминаем свойство медиан Δ-ка: Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Поэтому Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Дано:
ABCD — параллелограмм,
AC и BD -диагонали,
AC=BD.
Доказать: ABCD — прямоугольник.
Доказательство:
1. Рассмотрим треугольники ABD и DCA (не забываем, что важно правильно назвать треугольники!).
1) AC=BD (по условию).
2) Сторона AD — общая.
3) AB=CD (как противолежащие стороны параллелограмма).
Следовательно, треугольники ABD и DCA равны (по трем сторонам).
2. Из равенства треугольников следует равенство соответствующих углов:
∠BAD=∠CDA.
3. ∠BAD+∠CDA=180º.(как внутренние накрест лежащие углы при AB ∥ CD и секущей AD).
Пусть ∠BAD=∠CDA=xº, тогда
x+x=180
2x=180
x=90
4. Значит, ∠BAD=∠CDA=90º. Следовательно, ABCD — параллелограмм, у которого есть прямой угол. Отсюда, ABCD — прямоугольник ( по второму признаку прямоугольника).
Что и требовалось доказать.
Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому
Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)