Пусть даны треугольники АВС и А1В1С1, у которых стороны АС и А1С1 равны. Высоты, проведенные из концов этих сторон к боковым сторонам треугольников, также равны. То есть АЕ = А1Е1 и СD = C1D1. Прямоугольные треугольники АЕС и А1Е1С1, ADC и A1D1C1 равны по катету и гипотенузе (четвертый признак равенства прямоугольных треугольников) так как АС=А1С1 (гипотенуза), а АЕ=А1Е1 и CD=C1D1 (катеты) - дано.Из этого равенства следует равенство углов DAC и D1A1C1, а также углов АСЕ И А1С1Е1. Тогда треугольники АВС и А1В1С1 равны по второму признаку равенства треугольников, так как у них равны стороны (АС=А1С1) и углы, прилежащие к этим сторонам (<ВАС = <В1А1С1 и <ВСА=<В1А1С1 - доказано выше).
Найдите площади боковой и полной поверхности правильной треугольной пирамиды со стороной основания 4 см и боковым ребром 6 см.
Объяснение:
АВСМ-правильная треугольная пирамида, АВС-основание, МА=6см, АС=4 см.
1)S(полн.пр.пир.)=S(осн)+S(бок) ;
S(бок)=1/2*Р(осн)*а, а-апофема,
S(осн)=S(прав. треуг)=(а²√3)/4.
2) S(осн)=(4²√3)/4= 4√3 (см²) ;
3)Пусть ВК⊥АС, тогда ВК-медиана ,т.к треугольник правильный ⇒
АК=2 см.
Т.к. ВК⊥АС, то МК⊥АС по т. о трех перпендикулярах (МО-высота прирамиды). Тогда ΔАМК-прямоугольный, по т. Пифагора
МК=√(АМ²-АК²) , МК=√(36-4)=√32=4√2 (см).
4) Р( осн.)=4*3=12(см) ,
S(бок)=1/2*12*4√2=24√2 (см²)
5)S(полн.пр.пир.)=4√3+24√2 (см²)
Пусть даны треугольники АВС и А1В1С1, у которых стороны АС и А1С1 равны. Высоты, проведенные из концов этих сторон к боковым сторонам треугольников, также равны. То есть АЕ = А1Е1 и СD = C1D1. Прямоугольные треугольники АЕС и А1Е1С1, ADC и A1D1C1 равны по катету и гипотенузе (четвертый признак равенства прямоугольных треугольников) так как АС=А1С1 (гипотенуза), а АЕ=А1Е1 и CD=C1D1 (катеты) - дано.Из этого равенства следует равенство углов DAC и D1A1C1, а также углов АСЕ И А1С1Е1. Тогда треугольники АВС и А1В1С1 равны по второму признаку равенства треугольников, так как у них равны стороны (АС=А1С1) и углы, прилежащие к этим сторонам (<ВАС = <В1А1С1 и <ВСА=<В1А1С1 - доказано выше).
Что и требовалось доказать.