4.Из т.В до прямой а проведенны две наклонные : ВА=20см, ВС=13 см. Проекция наклонной ВА больше от проекции наклонной ВС на 11см. Найти проекции этих наклонных
1 теорема: Квадрат длины касательной (DC) = произведению длины секущей (DA), проведенной из той же точки (у нас это D), на ее внешнюю часть (DB). 2 теорема: Угол между касательной (DC) и хордой (BC), проведенными из одной точки (у нас это С), = половине градусной меры дуги, заключенной между касательной и хордой. и вписанный угол ВАС = половине градусной меры той же дуги... легко заметить, что треугольник DLC окажется равнобедренным))
Правильный многоугольник - это выпуклый многоугольник, у которого все стороны равны и все углы равны.
Полезно запомнить формулы, выражающие сторону правильного n-угольника через радиус R описанной и через радиус r вписанной окружностей: а = 2R · sin(180°/n) и a = 2r · tg(180°/n), откуда
на ее внешнюю часть (DB).
2 теорема: Угол между касательной (DC) и хордой (BC), проведенными из одной точки (у нас это С), = половине градусной меры дуги,
заключенной между касательной и хордой.
и вписанный угол ВАС = половине градусной меры той же дуги...
легко заметить, что треугольник DLC окажется равнобедренным))
Правильный многоугольник - это выпуклый многоугольник, у которого все стороны равны и все углы равны.
Полезно запомнить формулы, выражающие сторону правильного n-угольника через радиус R описанной и через радиус r вписанной окружностей: а = 2R · sin(180°/n) и a = 2r · tg(180°/n), откуда
а₃ = R√3, а₄ = R√2 и а₃ = 2r√3, a₄ = 2r.
1) а = 6√3 - сторона правильного треугольника
а) Р = 3а = 3 · 6√3 = 18√3;
б) S = a²√3/4 = (6√3)² · √3/4 = 36 · 3 · √3 /4 = 27√3;
в) R = а/√3 = 6√3/√3 = 6;
г) r = а/(2√3) = 6√3/(2√3) = 3.
2) а = 5 - сторона квадрата
а) Р = 4а = 4 · 5 = 20;
б) S = a² = 5² = 25;
в) R = а/√2 = 5/√2 = 5√2/2;
г) r = а/2 = 5/2 = 2,5.