4. Какую высоту должно иметь жестяное ведро в форме усеченного конуса емкостью 15 литров, если диаметры его оснований должны иметь длину 2,4 дм, и 3 дм?
Последний раз решала такие задачи в 7 классе. Могла что-то забыть. Назовем треугольник АВС. ВС - по условию гипотенуза, равная 13 см. Известно, что катеты относятся, как 5:12, тогда, АС = 5х (см), а АВ = 12 х (см). ( Условно разделив катеты на части, получаем, что 1 часть = х см). По теореме Пифагора: ВC в кв. = АС в кв. + АВ в кв. Составим и решим уравнение. 13 в кв. = 12х в кв. + 5х в кв; 169 = 144х в кв. + 25х в кв; 169 = 169х в кв. х в кв. = корень квадратный из 169:169; х = 1. Итак, АС= 5х1=5 (см); АВ = 12х1=12 (см)
Высоты вместе с боковыми сторонами образуют два прямоугольных треугольника.В одном из них угол 45 градусов, значит он равнобедренный, так как и второй острый угол равен 45.Значит катеты равны 6см.Найдем гипотенузу, которая является боковой стороной, по теореме Пифагора: √36+36=√72=6√2см. Во втором треугольнике высота лежит против угла в 30 градусов,значит она равна 1/2 гипотенузы, которая является второй боковой стороной, то есть гипотенуза равна 12см. ответ: боковые стороны равны 6√2см и 12см.
Назовем треугольник АВС. ВС - по условию гипотенуза, равная 13 см. Известно, что катеты относятся, как 5:12, тогда, АС = 5х (см), а АВ = 12 х (см). ( Условно разделив катеты на части, получаем, что 1 часть = х см). По теореме Пифагора: ВC в кв. = АС в кв. + АВ в кв. Составим и решим уравнение. 13 в кв. = 12х в кв. + 5х в кв; 169 = 144х в кв. + 25х в кв; 169 = 169х в кв. х в кв. = корень квадратный из 169:169; х = 1.
Итак, АС= 5х1=5 (см); АВ = 12х1=12 (см)
Во втором треугольнике высота лежит против угла в 30 градусов,значит она равна 1/2 гипотенузы, которая является второй боковой стороной, то есть гипотенуза равна 12см. ответ: боковые стороны равны 6√2см и 12см.