Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
Дано: прямоугольный треугольник АВС;
угол С = 90;
СА = 3;
СВ = 4;
СН - высота.
Найти: СН - ?
1) рассмотрим прямоугольный треугольник АВС. Тогда по теореме Пифагора:
АС^2 + СВ^2 = АВ^2;
3^2 + 4^2 = АВ^2;
9 + 16 = АВ^2;
25 = АВ^2;
АВ = 5;
2) В прямоугольном треугольнике каждый катет - это среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Тогда
ВС = √( АВ * НВ);
4 = √( 5 * НВ) (возведем правую и левую часть в квадрат);
16 = 5 * НВ;
НВ = 16/5;
НВ = 3,2;
3) АС = √( АВ * НА);
3 = √( 5 * НА) (возведем правую и левую часть в квадрат);
9 = 5 * НА;
НА = 9/5;
НА = 1,8;
4) СН = √АН * НВ;
СН = √1,8 * 3,2;
СН = √5,76;
СН = 2,4.
ответ: 2,4.
0,5*АС=√(4-1)=√3. АС=2√3.
Площадь сечения равна 2√2*2√3=4√6.
ответ: S=4√6.