4. Oʻchoqda ovqat pishirish uchun 12 kg quruq oʻtin yoqildi. Oʻtin yoqilganda ajralib chiqqan issiqlikning to'rtdan bir qismi ovqatga, qolgan qismi o'choqni, qozonni va havoni isitishga ketdi. Ovqat pishguncha oʻziga qancha issiqlik miqdorini olgan?
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Проведём сечение пирамиды через рёбра BS и ES. Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ. В сечении получим 2 треугольника: BSE и KME. Ребро BS как гипотенуза равно 6√2. КМ - это линия наибольшего наклона плоскости. Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов. Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4. Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.
Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.
У трапеции нижнее основание АС равно AC = 2*6*cos30° = 2*6*(√3/2) = 6√3. Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF. В плоскости ВSE верх трапеции - точка Н. Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF. В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам. Сторона F₁B равна 6 + 3 = 9. Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4. Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6. H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.
Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.
У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5. Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2. Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.
Площадь сечения равна: S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 = 40.41658.
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ.
В сечении получим 2 треугольника: BSE и KME.
Ребро BS как гипотенуза равно 6√2.
КМ - это линия наибольшего наклона плоскости.
Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов.
Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4.
Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.
Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.
У трапеции нижнее основание АС равно
AC = 2*6*cos30° = 2*6*(√3/2) = 6√3.
Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF.
В плоскости ВSE верх трапеции - точка Н.
Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF.
В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам.
Сторона F₁B равна 6 + 3 = 9.
Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4.
Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6.
H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.
Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.
У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5.
Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2.
Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.
Площадь сечения равна:
S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 = 40.41658.