4 Периметр равнобедренного треугольника ABC с основанием ВС равен 54,1 см, а периметр равностороннего треугольника BCD равен 53,7 см. Найдите сторону AC.
1. В задаче у нас есть два треугольника: равнобедренный треугольник ABC и равносторонний треугольник BCD.
2. Периметр равнобедренного треугольника ABC равен 54,1 см. Периметр - это сумма всех сторон треугольника. Для равнобедренного треугольника длины двух равных сторон обозначаются одинаковым символом. Поэтому, пусть длина стороны AB равна x, а длина стороны BC равна x. Соседняя сторона, которая не равна двум равным сторонам, называется основанием. В нашем случае, основание треугольника AC равно y.
3. Периметр равностороннего треугольника BCD равен 53,7 см. У равностороннего треугольника все стороны равны друг другу. Обозначим длину стороны треугольника BCD как z.
4. Теперь мы можем записать уравнения для периметров обоих треугольников:
- Для равнобедренного треугольника ABC: x + x + y = 54,1. Учитывая, что две стороны равны, мы можем записать это как 2x + y = 54,1.
- Для равностороннего треугольника BCD: z + z + z = 53,7. Упрощая это уравнение, мы получим 3z = 53,7.
5. Теперь нам нужно найти значение стороны AC. Для этого нам нужно найти значения x, y и z.
6. Решим систему уравнений, состоящую из двух уравнений:
- Уравнение 1: 2x + y = 54,1.
- Уравнение 2: 3z = 53,7.
Давайте представим, что мы решаем первое уравнение относительно y:
- y = 54,1 - 2x.
7. Теперь второе уравнение заменяется на:
- 3z = 53,7.
8. Теперь мы можем записать уравнение, используя замену: 2x + (54,1 - 2x) = 53,7.
9. Упростив это уравнение, мы получим: 54,1 - x = 53,7.
10. Решим это уравнение для x:
- x = 54,1 - 53,7 = 0,4.
11. Теперь, когда мы знаем значение x, мы можем найти значение y, используя уравнение y = 54,1 - 2x:
- y = 54,1 - 2 * 0,4 = 54,1 - 0,8 = 53,3.
12. Мы также можем найти значение z, используя уравнение 3z = 53,7:
- z = 53,7 / 3 = 17,9.
13. Мы нашли значения x, y и z:
- x = 0,4 см,
- y = 53,3 см,
- z = 17,9 см.
14. Для нахождения стороны AC нам нужно знать длины сторон AB и BC. У нас изначально есть только значения x и y. Поэтому нам нужно найти эти значения, используя формулу периметра равнобедренного треугольника ABC: 2x + y = 54,1.
15. Подставим в это уравнение значения x и y:
- 2 * 0,4 + y = 54,1.
- 0,8 + y = 54,1.
- y = 54,1 - 0,8 = 53,3.
16. Таким образом, мы нашли значения сторон AB и BC:
- AB = x = 0,4 см,
- BC = y = 53,3 см.
17. И, наконец, для нахождения стороны AC (основания равнобедренного треугольника), нам нужно найти разницу между периметром равнобедренного треугольника и суммой сторон AB и BC:
- AC = периметр (ABC) - (AB + BC).
- AC = 54,1 - (0,4 + 53,3).
- AC = 54,1 - 53,7 = 0,4 см.
1. В задаче у нас есть два треугольника: равнобедренный треугольник ABC и равносторонний треугольник BCD.
2. Периметр равнобедренного треугольника ABC равен 54,1 см. Периметр - это сумма всех сторон треугольника. Для равнобедренного треугольника длины двух равных сторон обозначаются одинаковым символом. Поэтому, пусть длина стороны AB равна x, а длина стороны BC равна x. Соседняя сторона, которая не равна двум равным сторонам, называется основанием. В нашем случае, основание треугольника AC равно y.
3. Периметр равностороннего треугольника BCD равен 53,7 см. У равностороннего треугольника все стороны равны друг другу. Обозначим длину стороны треугольника BCD как z.
4. Теперь мы можем записать уравнения для периметров обоих треугольников:
- Для равнобедренного треугольника ABC: x + x + y = 54,1. Учитывая, что две стороны равны, мы можем записать это как 2x + y = 54,1.
- Для равностороннего треугольника BCD: z + z + z = 53,7. Упрощая это уравнение, мы получим 3z = 53,7.
5. Теперь нам нужно найти значение стороны AC. Для этого нам нужно найти значения x, y и z.
6. Решим систему уравнений, состоящую из двух уравнений:
- Уравнение 1: 2x + y = 54,1.
- Уравнение 2: 3z = 53,7.
Давайте представим, что мы решаем первое уравнение относительно y:
- y = 54,1 - 2x.
7. Теперь второе уравнение заменяется на:
- 3z = 53,7.
8. Теперь мы можем записать уравнение, используя замену: 2x + (54,1 - 2x) = 53,7.
9. Упростив это уравнение, мы получим: 54,1 - x = 53,7.
10. Решим это уравнение для x:
- x = 54,1 - 53,7 = 0,4.
11. Теперь, когда мы знаем значение x, мы можем найти значение y, используя уравнение y = 54,1 - 2x:
- y = 54,1 - 2 * 0,4 = 54,1 - 0,8 = 53,3.
12. Мы также можем найти значение z, используя уравнение 3z = 53,7:
- z = 53,7 / 3 = 17,9.
13. Мы нашли значения x, y и z:
- x = 0,4 см,
- y = 53,3 см,
- z = 17,9 см.
14. Для нахождения стороны AC нам нужно знать длины сторон AB и BC. У нас изначально есть только значения x и y. Поэтому нам нужно найти эти значения, используя формулу периметра равнобедренного треугольника ABC: 2x + y = 54,1.
15. Подставим в это уравнение значения x и y:
- 2 * 0,4 + y = 54,1.
- 0,8 + y = 54,1.
- y = 54,1 - 0,8 = 53,3.
16. Таким образом, мы нашли значения сторон AB и BC:
- AB = x = 0,4 см,
- BC = y = 53,3 см.
17. И, наконец, для нахождения стороны AC (основания равнобедренного треугольника), нам нужно найти разницу между периметром равнобедренного треугольника и суммой сторон AB и BC:
- AC = периметр (ABC) - (AB + BC).
- AC = 54,1 - (0,4 + 53,3).
- AC = 54,1 - 53,7 = 0,4 см.
Ответ: Длина стороны AC равна 0,4 см.