1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
Теперь можно определить площади боковых граней.
Sбок = (1/2) *(6*8 + 12*8 + 15*(4/5)√181) = (72 + 6√181) см².
Площадь основания Sо = (1/2)(9*12) = 54 см².
Полная площади пирамиды равна 54 + 72 + 6√181 = 126 + 6√181 см².
Объём пирамиды равен (1/3)*54*8 = 144 см³.