4. За якого значення m вектори а(-8; 4)i b( 4; m-1) колінеарні? 5. Дано вектори а(-1; 5) і b(4;-3). Знайдіть вектор с=5а +3b та його абсолютиу величину. і 6
Треугольник АВС образова наклонными АВ и АС.По условию АВ=ВС и угол ьежду ними =60° ⇒ ΔАВС - равносторонний ⇒ ВС=АВ=АС=а.Из ΔВОС: ВО=ОС как равные проекции равных наклонных⇒ ΔВОС - равнобедренный с углом в 90° ( по условию). Обозначим ВО=ОС=х. Тогда по теореме Пифагора ВО²+ОС²=ВС²,2х²=а², х=(а*√2)/2.Из ΔАОВ: cos<ABO=ВО/АВ=√2/2.Значит угол АВО=45°. Это и естть угол ьежду наклонной и плоскостью, потому, что он является углом между наклонной и её проекцией на плоскость. А ΔАОС=ΔАОВ и <АСО=45°.
Т.к. ABCD - параллелограмм, AB || CD, то есть AB || CK. Тогда BK - секущая при параллельных прямых. Следовательно, ∠ABK=∠BKC, как накрест лежащие углы при параллельных прямых. Рассмотрим треугольник BCK: ∠CBK=∠BKC (∠ABK=∠CBK, по условию, а ∠ABK=∠BKC), следовательно, треугольник BCK равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть BC = CK = 8 (по условию). BC = CD + DK, CD = AB = 6 (по свойству параллелограмма), тогда DK = BC - CD = 8 - 6 = 2.
№50:
Т.к. ABCD - параллелограмм, BC || AD, то есть BC || MD. Тогда CM - секущая при параллельных прямых. Следовательно ∠BCM=∠CMA, как накрест лежащие углы при параллельных прямых.. Рассмотрим треугольник CAM: ∠CMA=∠MCA (∠MCA = ∠BCM по условию, а ∠BCM=∠CMD), следовательно, треугольник CAM равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть AM = AC = 10 (по условию). MD = AM + AD, BC = AD = 6 (по свойству параллелограмма), тогда MD = AM + AD = 10 + 6 = 16.
№49: DK = 2
№50: MD = 16
Объяснение:
№49:
Т.к. ABCD - параллелограмм, AB || CD, то есть AB || CK. Тогда BK - секущая при параллельных прямых. Следовательно, ∠ABK=∠BKC, как накрест лежащие углы при параллельных прямых. Рассмотрим треугольник BCK: ∠CBK=∠BKC (∠ABK=∠CBK, по условию, а ∠ABK=∠BKC), следовательно, треугольник BCK равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть BC = CK = 8 (по условию). BC = CD + DK, CD = AB = 6 (по свойству параллелограмма), тогда DK = BC - CD = 8 - 6 = 2.
№50:
Т.к. ABCD - параллелограмм, BC || AD, то есть BC || MD. Тогда CM - секущая при параллельных прямых. Следовательно ∠BCM=∠CMA, как накрест лежащие углы при параллельных прямых.. Рассмотрим треугольник CAM: ∠CMA=∠MCA (∠MCA = ∠BCM по условию, а ∠BCM=∠CMD), следовательно, треугольник CAM равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть AM = AC = 10 (по условию). MD = AM + AD, BC = AD = 6 (по свойству параллелограмма), тогда MD = AM + AD = 10 + 6 = 16.