40 ! точка м принадлежит отрезку ке, длина которого равна 9 см. определите длину отрезков мк и ме, если длина отрезка мк на 0,6 см меньше от длины отрезка ме.
1. Меньшая диагональ правильного шестиугольника образует равнобедренный треугольник с углом при вершине - 120°. Основание треугольника - 6√3 (по условию). Проводим высоту из вершины треугольника. Она является биссектрисой и медианой. В образовавшемся треугольнике углы - 60°, 30°, 90°. Против угла 30° лежит катет в два раза меньше гипотенузы. Принимаем за х высоту треугольника и решаем по тю Пифагора: 4х²=х²+(3√3)² 3х²=27 х=3; Гипотенуза - сторона правильного шестиугольника равна 3*2=6. Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности. R=6. L=2πR=12π.
2. Неизвестный угол обозначен на чертеже красным цветом. Находим FH из прямоугольного треугольника BFH. FH=√(5²-3²)=4. В треугольнике ВНО ВН=ОН (углы при ОВ 45° и угол Н 90°) и равны 6/2=3. Тогда, из треугольника FHO FH*cosα=OH, cosα=OH/FH, α=arccosOH/FH=arccos0.6.
В образовавшемся треугольнике углы - 60°, 30°, 90°. Против угла 30° лежит катет в два раза меньше гипотенузы. Принимаем за х высоту треугольника и решаем по тю Пифагора:
4х²=х²+(3√3)²
3х²=27
х=3;
Гипотенуза - сторона правильного шестиугольника равна 3*2=6.
Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.
R=6.
L=2πR=12π.
2. Неизвестный угол обозначен на чертеже красным цветом.
Находим FH из прямоугольного треугольника BFH.
FH=√(5²-3²)=4.
В треугольнике ВНО ВН=ОН (углы при ОВ 45° и угол Н 90°) и равны 6/2=3.
Тогда, из треугольника FHO FH*cosα=OH, cosα=OH/FH, α=arccosOH/FH=arccos0.6.
Формула площади треугольника по двум сторонам:
formula ploschadi treugolnika po dvum storonam
\[S = \frac{1}{2}ab\sin \alpha \]
ploschad treugolnika po dvum storonam
Дано:
∆ ABC.
Доказать:
\[{S_{\Delta ABC}} = \frac{1}{2}AB \cdot AC \cdot \sin \angle A\]
Доказательство:
ploschad treugolnika po dvum storonam i sinusu ugla
Проведем в треугольнике ABC высоту BD.
Площадь треугольника
равна половине произведения его стороны на высоту, проведенную к этой стороне:
\[{S_{\Delta ABC}} = \frac{1}{2}AC \cdot BD.\]
Рассмотрим треугольник ABD — прямоугольный (так как BD — высота по построению).