№5.Чи можна вважати поворотом центральну симетрію? №6. При паралельному перенесенні точка (1;1) переходить у точку (-2;3). У яку точку переходить точка А(7;5) ?Бажаю успіхів.
Во первых, ошибка в условии. Треугольник АВС равнобедренный с тупым углом В, значит АВ=ВС=ВВ1. Угол между прямыми В1С и АВ - это угол между скрещивающимися прямыми, так как АВ и В1С - прямые, не лежащие в одной плоскости. Определение: Скрещивающиеся прямые - это прямые, которые не лежат в одной плоскости. Определение: Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся. Проводим через точку С прямую, параллельную прямой АВ. Опустим на эту прямую перпендикуляр ВН. Тогда искомый угол - угол ВСН, косинус которого равен Cosα=CH/B1C. B1C - это гипотенуза прямоугольного треугольника ВВ1С, катеты которого равны (ВВ1=ВС дано). Тогда В1с=а√2, а НС - это катет прямоугольного треугольника ВНС, лежащего против угла <HBC=30° (так как <HBC=<ABC-<ABH или <HBC=120°-90°=30°). НС=(1/2)*ВС=а/2. Тогда Cosα=(а/2)/(а√2)=1/2√2=√2/4. ответ: Угол равен arccos(√2/4).
Второй вариант: Решим задачу координатным Пусть а=1, а начало координат - в точке А. Найдем координаты точек А,В,С и В1. Из прямоугольного треугольника АВР c <A=30° имеем АР=Yb=√3/2. Из прямоугольного треугольника АКВ c <В=30° имеем АК=Xb=1/2. Треугольник АВС равнобедренный, значит АС=2*АР=√3. Тогда: Точки: А(0;0;0); B(1/2;√3/2;0),C(0;√3;0) и B1(1/2;√3/2;1). Координаты вектора равны разности соответствующих координат точек его конца и начала, значит Вектора: АВ{1/2;√3/2;0}, B1C{-1/2;-√3/2;-1}. Модули векторов: |AB|=√[(1/2)²+(√3/2)²+0]=1 (что соответствует условию задачи, так как мы приняли а=1). |B1C|=√[(1/2)²+(√3/2)²+1²]=√2. (что также соответствует условию, ведь В1С - диагональ грани ВВ1С1С - квадрата со стороной равной а=1). Угол α между векторами a и b: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)]. В нашем случае: Угол α между вектором АВ и СВ1: cosα=(3/4-1/4+0)/[√(3/4+1/4+0)*√(3/4+1/4+1)]=(1/2)/√2= =1/(2√2)=√2/4. ответ: угол между векторами АВ и СВ1 равен arccos(√2/4). Или ≈69,5°.
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
Угол между прямыми В1С и АВ - это угол между скрещивающимися прямыми, так как АВ и В1С - прямые, не лежащие в одной плоскости.
Определение: Скрещивающиеся прямые - это прямые, которые не лежат в одной плоскости.
Определение: Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Проводим через точку С прямую, параллельную прямой АВ. Опустим на эту прямую перпендикуляр ВН. Тогда искомый угол - угол ВСН, косинус которого равен Cosα=CH/B1C. B1C - это гипотенуза прямоугольного треугольника ВВ1С, катеты которого равны (ВВ1=ВС дано). Тогда В1с=а√2, а НС - это катет прямоугольного треугольника ВНС, лежащего против угла <HBC=30° (так как <HBC=<ABC-<ABH или <HBC=120°-90°=30°). НС=(1/2)*ВС=а/2.
Тогда Cosα=(а/2)/(а√2)=1/2√2=√2/4.
ответ: Угол равен arccos(√2/4).
Второй вариант:
Решим задачу координатным
Пусть а=1, а начало координат - в точке А.
Найдем координаты точек А,В,С и В1.
Из прямоугольного треугольника АВР c <A=30° имеем АР=Yb=√3/2. Из прямоугольного треугольника АКВ c
<В=30° имеем АК=Xb=1/2.
Треугольник АВС равнобедренный, значит АС=2*АР=√3. Тогда:
Точки: А(0;0;0); B(1/2;√3/2;0),C(0;√3;0) и B1(1/2;√3/2;1).
Координаты вектора равны разности соответствующих координат точек его конца и начала, значит
Вектора: АВ{1/2;√3/2;0}, B1C{-1/2;-√3/2;-1}.
Модули векторов: |AB|=√[(1/2)²+(√3/2)²+0]=1 (что соответствует условию задачи, так как мы приняли а=1). |B1C|=√[(1/2)²+(√3/2)²+1²]=√2. (что также соответствует условию, ведь В1С - диагональ грани ВВ1С1С - квадрата со стороной равной а=1).
Угол α между векторами a и b:
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)].
В нашем случае:
Угол α между вектором АВ и СВ1:
cosα=(3/4-1/4+0)/[√(3/4+1/4+0)*√(3/4+1/4+1)]=(1/2)/√2=
=1/(2√2)=√2/4.
ответ: угол между векторами АВ и СВ1 равен
arccos(√2/4). Или ≈69,5°.
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27