Т.к. в треугольнике сумма углов равна 180, то угол В=30 градусов.Высота делит АВС на 2 треугольника. Рассмотрим треугольник СDВ, где угол D=90, а угол В=30 градусам. СВ-гипотенуза, CD-катет, противолежащий углу в 30 градусов. Катет, противолежащий углу в 30 градусов равен половине длины гипотенузы, значит гипотенуза в 2 раза больше СD.
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
Значит ВС равен 12 корень из 3
1. Дано: КМРТ - трапеция, КМ=РТ, КТ=14 дм, МР=8 дм. МН - высота, МН=4 дм. Найти КМ.
Решение: проведем высоту РС.
МР=СН=8 дм.
ΔКМН=ΔРСТ по катету и гипотенузе, КН=СТ=(14-8):2=3 дм.
Рассмотрим ΔКМН - прямоугольный, КН=3 дм, МН=4 дм, значит КМ=5 дм (египетский треугольник).
ответ: 5 дм.
2. Дано: КМСТ - прямоугольник, Р=56 см, КТ-МК=4 см. Найти МТ.
Решение: МК+КТ=56:2=28 см. Пусть КТ=х см, тогда МК=х-4 см.
Составим уравнение: х+х-4=28; 2х=32; х=16.
КТ=16 см; МК=16-4=12 см. Тогда по теореме Пифагора
МТ=√(16²+12²)=√(256+144)=√400=20 см.
(или просто: МТ=20 см, т.к. МК:КТ=12:16=3:4; МКТ - египетский треугольник)
ответ: 20 см.