Сумма углов выпуклого n-угольника вычисляется по формуле:
180° · (n - 2).
1.
а) n = 10
180° · (10 - 2) = 180° · 8 = 1440°
б) n = 12
180° · (12 - 2) = 180° · 10 = 1800°
2.
а) 1080° = 180° · (n - 2)
n - 2 = 1080° : 180°
n - 2 = 6
n = 8
б) 1320° = 180° · (n - 2)
n - 2 = 1320° : 180°
n - 2 = 7 1/3
так как n натуральное число, то многоугольника с суммой углов 1320° не существует.
в) 3960° = 180° · (n - 2)
n - 2 = 3960° : 180°
n - 2 = 22
n = 24
г) 1800° = 180° · (n - 2)
n - 2 = 1800° : 180°
n - 2 = 10
n = 12
Объяснение:
ПРОСТИТЕ ЕСЛИ НЕ ПРАВИЛЬНО
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Сумма углов выпуклого n-угольника вычисляется по формуле:
180° · (n - 2).
1.
а) n = 10
180° · (10 - 2) = 180° · 8 = 1440°
б) n = 12
180° · (12 - 2) = 180° · 10 = 1800°
2.
а) 1080° = 180° · (n - 2)
n - 2 = 1080° : 180°
n - 2 = 6
n = 8
б) 1320° = 180° · (n - 2)
n - 2 = 1320° : 180°
n - 2 = 7 1/3
так как n натуральное число, то многоугольника с суммой углов 1320° не существует.
в) 3960° = 180° · (n - 2)
n - 2 = 3960° : 180°
n - 2 = 22
n = 24
г) 1800° = 180° · (n - 2)
n - 2 = 1800° : 180°
n - 2 = 10
n = 12
Объяснение:
ПРОСТИТЕ ЕСЛИ НЕ ПРАВИЛЬНО
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение: