5. Швидкість руху точки задано рівнянням у = Зcos t. Знайти рывняння руху, якщо в момент часу t =), точка знаходилась на відстані 4 м від початкового положення. ( )
Пусть АВ=А1В1=х, ВС=В1С1=у, ВВ1=h, ∠В=∠В1=α. По условию В1М=х/2, В1N=2у/3, ВК=у/3. Тр-ки В1МN и BНK подобны так как соответственные стороны параллельны и ∠В=∠В1. Их коэффициент подобия: k=В1N/ВК=(2у/3):(у/3)=2. Соответственно коэффициент подобия их площадей k²=4. S1=S(В1МN)=(1/2)·(х/2)·(2у/3)·sinα=xy·sinα/6. S2=S(BHK)=S(B1MN)/k²=xy·sinα/24. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3. Объём пирамиды ВНКВ1MN: V1=h[(xy·sinα/6)+(xy·sinα/12)+(xy·sinα/24)]/3=7xyh·sinα/72. Объём призмы АВСА1В1С1: V2=xyh·sinα/2. Объём многогранника АСКНА1С1NM: V3=V2-V1=(xyh·sinα/2)-(7xyh·sinα/72)=29xyh·sinα/72. V1:V3=7:29 - это ответ.
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
По условию В1М=х/2, В1N=2у/3, ВК=у/3.
Тр-ки В1МN и BНK подобны так как соответственные стороны параллельны и ∠В=∠В1. Их коэффициент подобия: k=В1N/ВК=(2у/3):(у/3)=2. Соответственно коэффициент подобия их площадей k²=4.
S1=S(В1МN)=(1/2)·(х/2)·(2у/3)·sinα=xy·sinα/6.
S2=S(BHK)=S(B1MN)/k²=xy·sinα/24.
Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3.
Объём пирамиды ВНКВ1MN:
V1=h[(xy·sinα/6)+(xy·sinα/12)+(xy·sinα/24)]/3=7xyh·sinα/72.
Объём призмы АВСА1В1С1:
V2=xyh·sinα/2.
Объём многогранника АСКНА1С1NM:
V3=V2-V1=(xyh·sinα/2)-(7xyh·sinα/72)=29xyh·sinα/72.
V1:V3=7:29 - это ответ.
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м