ВD - биссектриса и делит угол В на две равные части, поэтому дуги АD и СD, на которые опираются половины вписанного угла В, равны. По условию АD =АС . Треугольник АСD равнобедренный. ∠ АСD=∠ АDС. АС=АD равные хорды и стягивают равные дуги. Значит, дуга АВС=дуге АD. Но ◡АD=◡СD как дуги, на которые опираются равные углы АВD и СВD ⇒ Точки А, С, D делят окружность на три равные дуги с градусной мерой 360º:3=120º Вписанный угол АВС опирается на дугу АDС=120º*2=240º Вписанный угол равен половине дуги, на которую опирается. ⇒ Угол АВС=240º: 2=120º
По условию АD =АС .
Треугольник АСD равнобедренный. ∠ АСD=∠ АDС.
АС=АD равные хорды и стягивают равные дуги.
Значит, дуга АВС=дуге АD.
Но ◡АD=◡СD как дуги, на которые опираются равные углы АВD и СВD ⇒
Точки А, С, D делят окружность на три равные дуги с градусной мерой 360º:3=120º
Вписанный угол АВС опирается на дугу АDС=120º*2=240º Вписанный угол равен половине дуги, на которую опирается. ⇒
Угол АВС=240º: 2=120º
Дано :
ΔАВС ~ ΔA₁В₁С₁.
Отношение сходственных сторон = .
S(ΔАВС) = S(ΔА₁В₁С₁) + 77 (см²).
Найти :
S(ΔАВС) = ?
S(ΔА₁В₁С₁) = ?
Отношение сходственных сторон подобных треугольников равно коэффициенту подобия.Отсюда .
Так как k > 1, то в числителе стоит бо́льший треугольник.
Площади подобных треугольников относятся как квадрат коэффициента подобия.Пусть S(ΔА₁В₁С₁) = х, тогда S(ΔАВС) = х + 77 (см²) (так как площадь ΔАВС больше площади ΔА₁В₁С₁, то он, как раз таки, и есть бо́льший треугольник).
Составим уравнение -
S(ΔА₁В₁С₁) = x = 175 (cм²)
S(ΔАВС) = х + 77 (см²) = 175 (см²) + 77 (см²) = 252 (см²).
252 (см²), 175 (см²).