5. в прямоугольном треугольнике acb (/_c= 90°) ab= 10 км, /_ABC= 30°. проведем окружность, центр которой находится в точке А. как насчет радиуса этой окружности, когда: 1) окружность bc будет стремиться к прямой; 2) bc не будет иметь общей точки с прямой; 3) bc будет иметь две общие точки с прямой?
Данная фигура - это трапеция. Площадь трапеции равна произведению полусуммы её оснований на высоту:
S=(9 см + 4 см)/2 × 4 см=26 см²
Чтобы вычислить периметр необходимо найти длины боковых сторон. Найдём их, используя теорему Пифагора (квадрат гипотенузы равен сумме квадратов катетов). В первом треугольнике катеты равны 4 см.
(4² + 4²) см² = 32 см²
√(32 см²)=4√2 см
Во втором треугольнике один катет равен 4 см, а другой - 1 см.
(4² + 1²) см²=17 см²
√(17 см²)=√17 см
Отсюда периметр равен:
9 см + 4 см + 4√2 см + √17 см = 13 см + 4√2 см + √17 см (≈22,8 см)
ответ: S=26 см²; P=13 см + 4√2 см + √17 см
Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk.
Радиус его основания равен: Rk = H/√3.
Площадь основания Sok = πRk² = πH²/3.
Площадь Sбок боковой поверхности равна:
Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3.
Площадь S полной поверхности равна:
S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр.
Радиус его основания равен: Rц = H/2.
Площадь основания Soц = πRц² = πH²/4.
Площадь Sбок боковой поверхности равна:
Sбок = 2πRцH = 2π(H/2)*H = πH².
Площадь S полной поверхности равна:
S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).