Высота QL делит тр-к PQR на два подобных треугольника: QRL и PQL. Эти прямоугольные тр-ки подобны по двум равным углам: уг.QRL = уг.PQL и уг.RQL = уг.QPL как острые углы с взаимно перпендикулярными сторонами. Эти тр-ки подобны также и исходному тр-ку PQR по тем же углам.
Против равных углов в подобных тр-ках лежат пропорциональные стороны:
Катет PQ в тр-ке PQR и катет PL в тр-ке PQL лежат против равных углов (уг.QRL = уг.PQL), гипотенуза PR в тр-ке PQR и гипотенуза PQ в тр-ке PQL лежат (естественно!) против прямых углов, поэтому PQ:PL = PR:PQ: ,
Высота QL делит тр-к PQR на два подобных треугольника: QRL и PQL. Эти прямоугольные тр-ки подобны по двум равным углам: уг.QRL = уг.PQL и уг.RQL = уг.QPL как острые углы с взаимно перпендикулярными сторонами. Эти тр-ки подобны также и исходному тр-ку PQR по тем же углам.
Против равных углов в подобных тр-ках лежат пропорциональные стороны:
Катет PQ в тр-ке PQR и катет PL в тр-ке PQL лежат против равных углов (уг.QRL = уг.PQL), гипотенуза PR в тр-ке PQR и гипотенуза PQ в тр-ке PQL лежат (естественно!) против прямых углов, поэтому
PQ:PL = PR:PQ: ,
откуда
PQ^2 = PL * PR.
Дана равнобокая трапеция АВСД
Бока АВ=СВ =
Угол А = углу Д = 45градусов
Опустим из точки В на основание АД высоту ВН
Рассмотрим треугольник АВН
АВ=
угол А =45градусов
Можно выразить высоту ВН
косинус угла А = высота ВН / АВ
BH=
Далее по теореме Пифагора можно найти второй катет АН:
решая это, находим, что АН=
Опустим из точки С трапеции еще одну высоту СК. Аналогичный треугольник. ДК=АН=
НК=ВС=4 (т.к. прямоугольник)
Следовательно основание трапеции АД=
Площадь трапеции = полусумме оснований умноженной на высоту: