Объяснение: Т.к. точка Т - середина АВ, то АТ=АВ/2,
Р - середина АС, значит, АР=АС/2, а т.к. точки Т и Р - середины двух сторон треугольника, то ТР- его средняя линия, она параллельна стороне ВС и равна ее половине. Значит, периметр треугольника АТР равен половине периметра треугольника АВС.=8см. По формуле площади треугольника - полупериметр умноженный на радиус окружности, вписанной в треугольник, ищем площадь треугольника АТР. Полупериметр треугольника АТР равен 8/2=4/см/
DE – радиус данной окружности.
Возьмём точку К (4;-7), проведем по линиям клеток DK и EK.
DK=|-5–(-7)|=|-5+7|=2
EK=|4–(-2)|=|4+2|=6
Так как углы любой клетки равны 90°, то угол DKE=90°.
Тогда по теореме Пифагора в ∆DKE:
DE²=DK²+EK²
DE²=2²+6²
DE²=4+36
DE²=40
То есть квадрат радиуса окружности равен 40.
Уравнение окружности имеет вид:
(x–a)²+(y–b)²=R²
где кординаты центра окружности (а;b), а R – радиус.
a) Центр окружности – точка D имеет кординаты (4;-5), тогда получим уравнение:
(x–4)²+(y+5)²=40
b) Центр окружности – точка E имеет кординаты (-2;-7), получим уравнение:
(х+2)²+(у+7)²=40
ответ выделен жирным шрифтом. Так как не дано какая из двух точек центр, я расписал два случая. Но вероятнее что всё-таки случай а)
Тогда ответ: (x–4)²+(y+5)²=40
ответ: 8см²
Объяснение: Т.к. точка Т - середина АВ, то АТ=АВ/2,
Р - середина АС, значит, АР=АС/2, а т.к. точки Т и Р - середины двух сторон треугольника, то ТР- его средняя линия, она параллельна стороне ВС и равна ее половине. Значит, периметр треугольника АТР равен половине периметра треугольника АВС.=8см. По формуле площади треугольника - полупериметр умноженный на радиус окружности, вписанной в треугольник, ищем площадь треугольника АТР. Полупериметр треугольника АТР равен 8/2=4/см/
Значит, искомая площадь 4*2=8/см²/