50 ! отрезок мв - перпендикуляр к плоскости прямоугольника авсd, ав = 5 см, вс = 16см. найдите расстояние от точки м до прямой ad, если расстояние от точки м до прямой cd равна 20 см
1. Пусть бок сторона А (это меньшая сторона), длина или основание В,
каждая биссектриса образует равнобедренный треугольник со стороной А, т.е. В делится на три равные части сумма двух из них равна А
Вывод В = 1,5 А или А = 2/3 В
2. у треугольников, куда входят стороны указанные пунктиром равные другие стороны (длины сторон пар-ма у каждого), осталось доказать что углы между ними тоже равны, помня что у равнобедренных = 60, а у пар-ма противополож равны, а смежные в сумме дают 180 ...
т.е у двоих а+60, а у третьего 360 - (180 - а) - 120 = 60 + а, т.е треугольники равны ...
Углы при основании равнобедренного треугольника равны: ∠А = ∠С = 35° ∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
Объяснение:
1. Пусть бок сторона А (это меньшая сторона), длина или основание В,
каждая биссектриса образует равнобедренный треугольник со стороной А, т.е. В делится на три равные части сумма двух из них равна А
Вывод В = 1,5 А или А = 2/3 В
2. у треугольников, куда входят стороны указанные пунктиром равные другие стороны (длины сторон пар-ма у каждого), осталось доказать что углы между ними тоже равны, помня что у равнобедренных = 60, а у пар-ма противополож равны, а смежные в сумме дают 180 ...
т.е у двоих а+60, а у третьего 360 - (180 - а) - 120 = 60 + а, т.е треугольники равны ...
По теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos∠B
64 = 36 + 49 - 2·6·7·cos∠B
cos∠B = (36 + 49 - 64) / (2 · 6 · 7) = 21 / (2 · 6 · 7) = 1/4
Основное тригонометрическое тождество:
sin²∠B + cos²∠B = 1
sin∠B = √(1 - cos²∠B) = √(1 - 1/16) = √15/4
2.
СН - высота, проведенная к боковой стороне.
∠ВСН - искомый.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = 35°
∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
ΔНВС: ∠ВНС = 90°, ∠НВС = 70°, ⇒ ∠ВСН = 20°