ЗАДАЧА 1 Основа рівнобедреного трикутника дорівнює 24см, а проведена до неї висота -16см. Знайдіть радіус кола, вписаного в трикутник. Решение: Боковая сторона нашего треугольника по Пифагору равна √(16²+12²) = √400 =20см. По формуле радиуса вписанной окружности имеем: r = b/2*√(2a-b)/(2a+b), где b - основание, а - боковая сторона. r= 24/2*√(40-24)/(40+24) = 6см.
ЗАДАЧА 2 Діагональ, бічна сторона і більша основа рівнобедреної трапеції дорівнюють відповідно 40см, 13 см і 51 см. Знайдіть радіус кола, описаного навколо трапеції. Решение: Есть фрмулы радиуса описанной окружности трапеции по сторонам и диагонали: R = adc/4√p(p-a)(p-d)(p-c), где a - боковая сторона, d- диагональ, с - большее основание. p = (a+d+c)/2 = 52. R = 26520/(4*√52*39*12*1) = 6630/√24336 = 6630/156 = 42,5см.
Основание треугольника - b, боковые стороны- а, Для любого треугольника верна теорема синусов: а/sin Ф =2d, значит а=2d*sin Ф Также угол при основании равнобедренного треугольника cos Ф = b/2a, откуда b=2a* cos Ф =2*2d*sin Ф* cos Ф=4d*sin Ф* cos Ф=2d sin 2Ф
радиус круга, вписанного в данный треугольник r=b/2*√(2a-b)/(2a+b)= =2d sin 2Ф/2 * √(2*2d sin Ф - 2d sin 2Ф)/(2*2d sin Ф + 2d sin 2Ф)= =d sin 2Ф *√(2 sin Ф - sin 2Ф)/(2 sin Ф + sin 2Ф)= =d sin 2Ф *√(2 sin Ф - 2sin Ф cos Ф)/(2 sin Ф + 2 sin Ф cos Ф)= =d sin 2Ф *√(1- cos Ф)/(1+ cos Ф)=d sin 2Ф *√tg² (Ф/2)=d sin 2Ф *tg (Ф/2)= =d*2sin Ф cosФ*(1-cos Ф)/sin Ф=2d*cosФ*(1-cos Ф)
ЗАДАЧА 1 Основа рівнобедреного трикутника дорівнює 24см, а проведена до неї висота -16см. Знайдіть радіус кола, вписаного в трикутник.
Решение:
Боковая сторона нашего треугольника по Пифагору равна √(16²+12²) = √400 =20см.
По формуле радиуса вписанной окружности имеем:
r = b/2*√(2a-b)/(2a+b), где b - основание, а - боковая сторона.
r= 24/2*√(40-24)/(40+24) = 6см.
ЗАДАЧА 2 Діагональ, бічна сторона і більша основа рівнобедреної трапеції дорівнюють відповідно 40см, 13 см і 51 см. Знайдіть радіус кола, описаного навколо трапеції.
Решение:
Есть фрмулы радиуса описанной окружности трапеции по сторонам и диагонали:
R = adc/4√p(p-a)(p-d)(p-c), где a - боковая сторона, d- диагональ, с - большее основание. p = (a+d+c)/2 = 52.
R = 26520/(4*√52*39*12*1) = 6630/√24336 = 6630/156 = 42,5см.
Для любого треугольника верна теорема синусов: а/sin Ф =2d,
значит а=2d*sin Ф
Также угол при основании равнобедренного треугольника cos Ф = b/2a, откуда
b=2a* cos Ф =2*2d*sin Ф* cos Ф=4d*sin Ф* cos Ф=2d sin 2Ф
радиус круга, вписанного в данный треугольник
r=b/2*√(2a-b)/(2a+b)=
=2d sin 2Ф/2 * √(2*2d sin Ф - 2d sin 2Ф)/(2*2d sin Ф + 2d sin 2Ф)=
=d sin 2Ф *√(2 sin Ф - sin 2Ф)/(2 sin Ф + sin 2Ф)=
=d sin 2Ф *√(2 sin Ф - 2sin Ф cos Ф)/(2 sin Ф + 2 sin Ф cos Ф)=
=d sin 2Ф *√(1- cos Ф)/(1+ cos Ф)=d sin 2Ф *√tg² (Ф/2)=d sin 2Ф *tg (Ф/2)=
=d*2sin Ф cosФ*(1-cos Ф)/sin Ф=2d*cosФ*(1-cos Ф)