7. (26) Знайдіть довжину невідомого відрізка x на рисунку (довжини відрізків дано в сантиметрах) 8 DO 21 6 8. (26)Розв'яжіть прямокутний трикутник із катетом 4 см і прилеглим гострим кутом 60°. 9. (16) Знайдіть значення виразу: 4 sin* 45° + cos 60° B
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3
Аналогично находим длину МО1 в меньшем основании А1В1С1. Отрезок МО1=(√3)/3.
По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.
Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.
Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²
————
Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒
сторону ВС в точке К, ВМ = ABh <LMBBi = /LBB\A. Докажите, что ВК= КВ\.5(п). На боковых сторонах равнобедренного треугольника во внешнюю сторону построены равносторонние треугольники. Докажите, что отрезки, соединяющие вершины равносторонних треугольников (отличные от вершин равнобедренного) с серединой основания равнобедренного треугольника, равны между собой.6(п). На двух перпендикулярных прямых от точки пересечения отложены четыре равных отрезка. Докажите, что концы этих отрезков, отличные от общего, служат вершинами четырехугольника с равными сторонами и равными углами.7(т). Докажите, что если у четырехугольника все стороны и все углы равны, то его диагонали равны и перпендикулярны.8(т). Докажите, что если у четырехугольника противоположные стороны попарно равны, то точка пересечения его диагоналей является центром симметрии четырехугольника.9. На листе бумаги изображен треугольник. Постройте треугольник, ему равный.10. На листе бумаги изображен угол. Постройте какой-нибудь угол, равный изображенному.11(b). Докажите, что в окружности равные хорды видны из центра под равными углами. (Отрезок АВ виден из точки О под углом АОВ.)12(b). Докажите, что середины равных хорд окружности расположены на окружности с тем же центром.13(т). На плоскости изображен угол в 19". Постройте угол в Г.14(т). В треугольнике ABC известны стороны АВ = 4, ВС = 5, СА = 7. Прямая, проходящая через вершину В перпендикулярно биссектрисе угла ВАС, пересекает АС в точке К. Через К проведена прямая, перпендикулярная биссектрисе угла ВСА, которая пересекает ВС в точке М. И, наконец, через М проходит прямая, перпендикулярная биссектрисе угла ABC, которая пересекает АВ в точке Р. Найдите длину отрезка АР.15(т). В треугольнике ABC известно, что АВ = 3, ВС = 4, СА = 6. На ВС взята точка М так, что СМ = 1. Прямая, проходящая через М перпендикулярно биссектрисе угла АСВ, пересекает3. И Ф Шарыгин
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3
Аналогично находим длину МО1 в меньшем основании А1В1С1. Отрезок МО1=(√3)/3.
Из т.М опустим перпендикуляр МК на ОН.
НК= НО-МО1=√3-(√3)/3= (2√3)/3
МК - катет прямоугольного треугольника МКН с гипотенузой МН=НК:cos ∠МНК=[(2√3):3]:1/2=4/√3 .
По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.
Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.
Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²
————
Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒
∆ РОН ~∆ МНК. k=НО:НК=√3:(2√3)/3=3/2
РО:МК=3/2.
МК=МН•sin60°=(4/√3 )•√3/2=2 см ⇒
PO=3 см