1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6. В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED. ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED). 2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE. ∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам. 3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC EF/10 = 6/13 ⇒ EF = 60/13 4) Пусть h - высота треугольника АВС, опущенная на боковую сторону. Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр 13h/2 = √(18 · 5 · 5 · 8) 13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60 h =120/13 5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований. Sade/Sdcf = DE/DF DF = AC = 10 как противолежащие стороны параллелограмма, DE = DF - EF = 10 - 60/13 = 70/13 Sade/Sdcf = (70/13) / 10 = 7/13
(x-5) ²+(y+9)²+(z+12)²=13² или (x-5) ²+(y+9)²+(z+12)²=169
Объяснение:
Перевод: Составить уравнение сферы с центром в точке (5; -9; -12), которая касается к оси ординат.
Решение.
Как известно, уравнение сферы имеет следующий вид:
(x-x₀) ²+(y-y₀)²+(z-z₀)²=R²,
где R - радиус сферы, (x₀; y₀; z₀) - координаты её центра.
Нам известно координаты её центра S(5; -9; -12), остаётся найти радиус R (см. рисунок).
По условию сфера должна касаться к оси ординат и поэтому радиусом будет расстояние от центра S до оси Oy, то есть перпендикулярный к оси Oy отрезок, соединяющий центр S с точкой касания оси Oy (на рисунке нужная ось и нужные отрезки показаны красным).
Так как отрезок AS, равная радиусу R, перпендикулярен к оси Oy, то треугольник OAS прямоугольный. Тогда по теореме Пифагора
OS²=OA²+AS² или AS²=OS²-OA².
Длина отрезка OA известно: OA = |-9| = 9. Найдём OS² как квадрат расстояния между точками O(0; 0; 0) и S(5; -9; -12):
В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13 ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13
(x-5) ²+(y+9)²+(z+12)²=13² или (x-5) ²+(y+9)²+(z+12)²=169
Объяснение:
Перевод: Составить уравнение сферы с центром в точке (5; -9; -12), которая касается к оси ординат.
Решение.
Как известно, уравнение сферы имеет следующий вид:
(x-x₀) ²+(y-y₀)²+(z-z₀)²=R²,
где R - радиус сферы, (x₀; y₀; z₀) - координаты её центра.
Нам известно координаты её центра S(5; -9; -12), остаётся найти радиус R (см. рисунок).
По условию сфера должна касаться к оси ординат и поэтому радиусом будет расстояние от центра S до оси Oy, то есть перпендикулярный к оси Oy отрезок, соединяющий центр S с точкой касания оси Oy (на рисунке нужная ось и нужные отрезки показаны красным).
Так как отрезок AS, равная радиусу R, перпендикулярен к оси Oy, то треугольник OAS прямоугольный. Тогда по теореме Пифагора
OS²=OA²+AS² или AS²=OS²-OA².
Длина отрезка OA известно: OA = |-9| = 9. Найдём OS² как квадрат расстояния между точками O(0; 0; 0) и S(5; -9; -12):
OS²=(5-0)²+(-9-0)²+(-12-0)²=5²+9²+12²=25+81+144=250.
Тогда
R²=AS²=OS²-OA²=250-9²=250-81=169=13² или
R=13.
Наконец, искомое уравнение сферы имеет вид:
(x-5) ²+(y+9)²+(z+12)²=13² или
(x-5) ²+(y+9)²+(z+12)²=169.