треугольник АВС, уголС=90, АВ=15, О-центр вписанной окружности, проводим радиусы перпендикулярные в точку касания ОК на АС, ОН на ВС, ОЕ на АВ, ОК=ОН=ОЕ=3, ОНСК квадрат, ОН=НС=СК=ОК=3, ВЕ=х, АЕ=АВ-ВЕ=15-х,
ВЕ=ВН=х как касательные проведенные из одной точки,, АЕ=АК=15-х как касательные..., ВС=ВН+НС=х+3, АС=АК+КС=15-х+3=18-х
АВ²=ВС²+АС², 225=(х²+6х+9)+(324-36х+х²), х²-15х+54=0, х=(15+-корень(225-216)/2, х1=9, х2=6, не играет роли какой брать х, х=9, ВС=9+3=12, АС=15-9+3=9, площадьАВС=1/2ВС*АС=1/2*12*9=54
Для удобства обозначим ад - а, сд - в, дд1 - с. Фотки вставлять не умею поэтому объясню так: Точки АВСД внизу, точки А1В1С1Д1 вверху над ними) рассмотрим плоскость АА1ДД1. Здесь треугольник АДД1 - прямоугольный. Тогда по теореме Пифагора а^2 + с^2 = АД^2. перейдем к плоскости СДД1С1. Здесь треугольник ДСС1 прямоугольный. По т. Пифагора: в^2 + с^2 = ДС1^2 (противоположные стороны равны, поэтому ДД1=СС1=с). Перейдем к плоскости АВСД. Здесь треугольник АСД прямоугольный. Тогда по той же любимой теореме Пифагора: а^2 + в^2 = ДВ^2. Объединим три полученных уравнения в систему и подставим известное: а^2 + с^2 = 64; в^2 + с^2 = 100; а^2 + в^2 = 144. Теперь выразим а^2 из первого, в^2 из второго и подставим в третье. а^2 = 64-с^2; в^2=100-с^2; 64 - с^2 + 100 - с^2 = 144, решаем последнее уравнение. 2с^2=20 , с = корень из 10, тогда в^2 = 100 - 10, в= корень из 90 = 3 корня из 10. а^2=64-10, а=корень из 54= 3 корня из 6
треугольник АВС, уголС=90, АВ=15, О-центр вписанной окружности, проводим радиусы перпендикулярные в точку касания ОК на АС, ОН на ВС, ОЕ на АВ, ОК=ОН=ОЕ=3, ОНСК квадрат, ОН=НС=СК=ОК=3, ВЕ=х, АЕ=АВ-ВЕ=15-х,
ВЕ=ВН=х как касательные проведенные из одной точки,, АЕ=АК=15-х как касательные..., ВС=ВН+НС=х+3, АС=АК+КС=15-х+3=18-х
АВ²=ВС²+АС², 225=(х²+6х+9)+(324-36х+х²), х²-15х+54=0, х=(15+-корень(225-216)/2, х1=9, х2=6, не играет роли какой брать х, х=9, ВС=9+3=12, АС=15-9+3=9, площадьАВС=1/2ВС*АС=1/2*12*9=54